

Quantum Systems for Information Technology

M.D. Barrett et. al.

Deterministic quantum teleportation of atomic qubits

Presented by Daniel Bechstein

Overview

- Using 3 ⁹Be⁺ lons
- Qubit 1 and 3 entangled
- Qubit 2 to be teleported onto 3

Process flow in Ion traps

1 2 3	4 5 6 7 8	B Electrodes
_	123 ●●●	1. Preparation
	•••	Spin echo
	•• •	2. Basis transformation
	•••	Spin echo
	• ••	3. Measurement 1
	•••	Spin echo
	•• •	4. Measurement 2
••	•	Spin echo
••	•	5. Conditional operations

Spin echo pulses used for longer coherence times

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Initial State Preparation

- Initial state: $|\Phi\rangle = |S\rangle_{1,3} \otimes |\psi\rangle_2$
- S is Singlet $|S\rangle_{1,3} \equiv |\uparrow\rangle_1 |\downarrow\rangle_3 |\downarrow\rangle_1 |\uparrow\rangle_3$

1 2 3	4 5 6	7 8	Electrodes
	123 •••		1. Preparation
	•••		Spin echo
	••	•	2. Basis transformation
	•••		Spin echo
	•	••	3. Measurement 1
	•••		Spin echo
	••	•	4. Measurement 2
••	•		Spin echo
••	•		5. Conditional operations

Prepared by 2 spin echo sequences

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Basis transformation

Use phase gate on qubits 1 and 2

1 2 3	4 5 6	7 8	Electrodes
	123 •••		1. Preparation
	•••		Spin echo
	••	•	2. Basis transformation
	•••		Spin echo
	•	••	3. Measurement 1
	•••		Spin echo
	••	•	4. Measurement 2
••	•		Spin echo
••	•		5. Conditional operations

- Single qubit rotation through Raman transitions $R(\theta, \phi) = \cos(\theta/2)I + i\sin(\theta/2)\cos(\phi)\sigma_x + i\sin(\theta/2)\sin(\phi)\sigma_y$
- Qubit state (Bell state of qubit 1,2 and unitary rotation of 3) $|\uparrow\uparrow\rangle_{1,2}\otimes R(\pi/2, -\pi/2)\sigma_x|\psi\rangle_3 + |\uparrow\downarrow\rangle_{1,2}\otimes R(\pi/2, -\pi/2)\sigma_y|\psi\rangle_3$ $+i|\downarrow\uparrow\rangle_{1,2}\otimes R(\pi/2, -\pi/2)I|\psi\rangle_3 - |\downarrow\downarrow\rangle_{1,2}\otimes R(\pi/2, -\pi/2)\sigma_z|\psi\rangle_3$

Bell state measurement

- Through fluoresence
- Measure qubit 1
- Measure qubit 2 (1+2)
 - Better fidelity when measuring qubits
 1 and 2 together
 - Qubit 1 is brought in | ↑ >

1 2 3 4 5	6 7 8	Electrodes
123		1. Preparation
	•••	Spin echo
•	• •	2. Basis transformation
	•••	Spin echo
	••	3. Measurement 1
	•••	Spin echo
•	• •	4. Measurement 2
••	•	Spin echo
••	,	5. Conditional operations

Conditional operations

 Apply unitary operations depending on measurement results on qubit 3

1 2 3 4 5 6 7 8	Electrodes
123	1. Preparation
•••	Spin echo
••••	2. Basis transformation
•••	Spin echo
• ••	3. Measurement 1
•••	Spin echo
•• •	4. Measurement 2
•• •	Spin echo
•• •	5. Conditional operations

$$|\uparrow\uparrow\rangle_{1,2} \otimes R(\pi/2, -\pi/2)\sigma_{x}|\psi\rangle_{3} + |\uparrow\downarrow\rangle_{1,2} \otimes R(\pi/2, -\pi/2)\sigma_{y}|\psi\rangle_{3}$$
$$+i|\downarrow\uparrow\rangle_{1,2} \otimes R(\pi/2, -\pi/2)I|\psi\rangle_{3} - |\downarrow\downarrow\rangle_{1,2} \otimes R(\pi/2, -\pi/2)\sigma_{z}|\psi\rangle_{3}$$

01/14/2009

8

Summary

- Fidelity Process 78%
- On demand Quantum Teleportation (using entanglement) works as fidelity over 2/3
- Entanglement is kept when moving ions

Thank you for your attention