

Vol 447|14 June 2007|doi:10.1038/nature05896

1

Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits

J. H. Plantenberg¹, P. C. de Groot¹, C. J. P. M. Harmans¹ & J. E. Mooij¹

Stephan Schnez

Nanophysics Group Solid State Physics Laboratory ETH Zurich

Outline

• Why CNOT-Gates?

Theoretical Background

• Experimental Realization

Results

|--|

	00	01	10	11
00	1	0	0	0
01	0	1	0	0
10	0	0	0	1
11	0	0	1	0

		Input					
		00	01	10	11		
	00	1	0	0	0		
Output	01	0	1	0	0		
	10	0	0	0	1		
	11	0	0	1	0		

• The CNOT gate flips the second qubit if and only if the first qubit is 1.

• The resulting value of the second qubit corresponds to the result of a classical XOR gate.

Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations (plus Hadamard gates for entangling).

two-qubit Hamiltonian:

$$H = -\frac{1}{2} \left(\varepsilon_1 \sigma_z^1 + \Delta_1 \sigma_x^1 + \varepsilon_2 \sigma_z^2 + \Delta_2 \sigma_x^2 \right) + J \sigma_z^1 \sigma_z^2$$

Experimental Realization

- couple two flux qubits magnetically
- tunability with individual flux biases
- realization of two-qubit operations with microwave pulses
- readout of qubit-states with SQUIDs
- put the whole thing into a dil fridge at 50mK

Results

Results

- Implementation of the complete set of four two-qubit CNOT-gates
- longer coherence times & optimized detector visibility will lead to higher fidelity
- possibility of implementation of two-qubit algorithms in a solid-state environment

Phase Factors

- phase shift of the states 1_C0_T and 1_C1_T relative to states 0_C0_T and 0_C1_T by execution of 2n CNOT-gates
- Ramsey-like interference experiment on n consecutive CNOT-gates

