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CNOT-Gate 
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•  The CNOT gate flips the second qubit if 
and only if the first qubit is 1. 

•  The resulting value of the second qubit 
corresponds to the result of a classical 
XOR gate. 

Any quantum circuit can be simulated to an arbitrary degree of 
accuracy using a combination of CNOT gates and single qubit 

rotations (plus Hadamard gates for entangling). 
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Theoretical Background 
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two-qubit Hamiltonian: 
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           ⇒  CNOT - gate for ωτ = π
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Experimental Realization 

•  couple two flux qubits magnetically 

•  tunability with individual flux biases 

•  realization of two-qubit operations with 
microwave pulses 

•  readout of qubit-states with SQUIDs 

•  put the whole thing into a dil fridge at 
50mK 
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Results 
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Results 
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CNOTexp =

0.51 0.22 0.13 0.14
0.28 0.47 0.21 0.04
0.08 0.23 0.05 0.64
0.20 0.14 0.51 0.15

 

 

 
 
 
 

 

 

 
 
 
 

        ⇒  fidelity F = 0.4 F =1 in ideal case( )
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Summary & Outlook 

•  Implementation of the complete set of four two-qubit 
CNOT-gates 

•  longer coherence times & optimized detector visibility will 
lead to higher fidelity 

•  possibility of implementation of two-qubit algorithms in a 
solid-state environment 
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Phase Factors 

•  phase shift of the states 1C0T and 1C1T relative to states 0C0T and 0C1T 
by execution of 2n CNOT-gates 
•  Ramsey-like interference experiment on n consecutive CNOT-gates 


