Solid-Sate Qubits with Current-Controlled Coupling

T. Hime¹, P. A. Reichardt¹, B. L. T. Plourde^{1,2}, T. L. Robertson¹, C.-E. Wu¹, A. V. Ustinov¹, John Clarke¹

¹Department of Physics, University of California, Berkeley ²Department of Physics, Syracuse University, NY

Motivation : single qubit and multiple qubit operations can be realised in the same system

Single qubit operations

Rabi oscillations, Ramsey fringes, spin echoes

Multiple qubit operations

Entanglement, quantum gates

Structure: flux qubit

voltage lead

flux qubits

•Superconducting loop + 3 Josephson junctions •External flux lines control flux Φ_A, Φ_B

- •Two screening currents built up \rightarrow states $|\uparrow\rangle,|\downarrow\rangle$
- •Splitting between ground and excited state $\upsilon = \sqrt{\Delta^2 + \varepsilon^2}$ with $\varepsilon = 2I_q (\Phi_q - (n+1/2)\Phi_0)$

 $v = \sqrt{\Delta^2 + \varepsilon^2}$ with $\varepsilon = 2I_q (\Psi_q - (n+1/2)\Psi_q)$

Structure: flux qubit

flux qubits

•Superconducting loop + 3 Josephson junctions •External flux lines control flux Φ_A, Φ_B

•Two screening currents built up \rightarrow states $|\uparrow\rangle,|\downarrow\rangle$

•Splitting between ground and excited state $\upsilon = \sqrt{\Delta^2 + \varepsilon^2}$ with $\varepsilon = 2I_q (\Phi_q - (n+1/2)\Phi_0)$

Structure: coupled flux qubits

flux

line 2

SQUID

30 µm

flux

line 1 -current and voltage lead

coupled qubits

-coupled via mutual inductuctance $\mathbf{M}_{\mathbf{qq}}$ and inductances $\rm M_{qAS}, \, \rm M_{qBS}$ to SQUID •4 new states, superpositions of

$$|\downarrow\downarrow\rangle\rangle,|\uparrow\uparrow\rangle\rangle,\frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle\right),\frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle\right)$$

Structure: SQUID

SQUID

•Superconducting loop + 2 Josephson junctions

• $\Phi_{\scriptscriptstyle S}$ is determined by $\Phi_{\scriptscriptstyle A}, \Phi_{\scriptscriptstyle B}$

•Current biased with I_b

Measurement

•Determine critical current I₀ via voltage pulses

- •Work in zero voltage regime
- •Adjust I_b, that SQUID switches out of zero voltage regime with 50% probability

Measurement

Measurement

Controlled Coupling

Coupling energy $K = K_0 + K_s = 2I_{qA}I_{qA} \left(-M_{qq} - M_{qAS}M_{qAS}\ell\right)$

Dynamic inductance $\ell^{-1} = \operatorname{Re}(\partial J / \partial \Phi_s)_{I_b}$ depends on I_b and Φ_s

Controlled Coupling

Coupled states

