1.0 Introduction to Quantum Systems for Information Technology

1.1 Motivation What is quantum mechanics good for?

traditional historical perspective:

- beginning of 20th century: classical physics fails to explain phenomena observed in nature
 - stability of atoms
 - discrete spectra of light emitted by atoms
 - spectrum of black body radiation
- use quantum mechanics to explain phenomena occurring in nature
 - properties of microscopic systems (atoms, nuclei, electrons, elementary particles)
 - energy level quantization
 - tunneling
 - entanglement
 - ...
 - properties of macroscopic systems
 - superconductivity
 - electronic band structure of semiconductors
 - ...
- quantum mechanics is a hugely successful theory ...
- ... but its concepts are difficult to grasp
 - entanglement
 - quantum measurement
 - EPR paradox

QSIT09.V01 Page 1

- ... Motivation
- early on study of quantum information and quantum computation is motivated by desire to better understand quantum mechanics
 - relation between information and physics Rolf Landauer: information is physical
 - 80's: Can quantum mechanics be used to transmit information faster than light? No: shown in the context of the *no-cloning theorem*.

Efforts to try to make use of quantum mechanics:

- Quantum computation and quantum information is the study of information processing that can be accomplished with quantum mechanical systems.
 - it took a long time after the development of QM to invent this new field

quantum information processing is enabled by new technologies:

- 70's: develop complete control over single quantum systems
 - single atoms/ions/molecules
 - single photons
 - 90's: single electrons/spins/flux quanta in solid state

o ...

- explore new regimes of nature that only occur in single isolated quantum systems
- different from prior experiments in quantum phenomena in ensembles
 - superconductivity, collective quantum effect of 10²³ electrons
 - no information over individual electrons
 - particle physics: analysis of constituents of matter
 - no control over individual particles

... Motivation

- now: control collections of individual quantum systems and their interactions
 - arrays of ions interacting electrically
 - $\circ~$ arrays of atoms interacting in collisions
 - o ...
 - demonstrate information processing with quantum systems
 - small systems have been realized (up to ten quantum objetcs)
 - larger systems remain a major physics and engineering challenge

Up to now we have discussed the physics perspective.

What about the computer science perspective?

- (1936) Turing machine
 - model for any realizable classical computer
 - But are there alternative computing schemes?
- realization of first electronic computers
 - 1947: the transistor is invented
 - great success up to now: Moore's Law (1965)

• first transistor at Bell Labs (1947) invented by John Bardeen, Walter Brittain, and Will Shockley

- 1 transistor
- size a few cm

• intel dual core processor (2006)

- 2.000.000.000 transistors
- smallest feature size 65 nm
- clock speed ~ 2 GHz
- power consumption 10 W
- 5 nW per transistor
- 2.5 10⁻¹⁸J per transistor per cycle

Moore's Law

... Motivation

- What will happen when electronic circuit components reach atomic sizes?
 - Will quantum mechanics be a problem?
 - Or will it be an opportunity?
 - Make use of quantum mechanics as an opportunity for novel approaches to computing.
 - Quantum computing is a new paradigm in computer science.

quantum information processing (QIP):

- Deutsch (1985)
 - finds a simple algorithm that is more efficient on a quantum computer
 - searches for computation device that could efficiently simulate any physical system (incl. quantum systems)
 - a device based on quantum mechanics in itself
- Shor (1994)
 - develops an efficient algorithm to find prime factors of an integer
 - exponential speed-up in comparison to classical algorithm
 - important because encryption schemes (RSA) are based on difficulty of problem
- Grover (1995)
 - searching in unstructured data bases (quadratic speed up)
- Feynman (1982)
 - simulate complex quantum systems
 - potentially the most interesting application

QSIT09.V01 Page 6

... Motivation

state of the art:

- difficult to realize and control even a small quantum computer
- BUT the concepts do work and have been demonstrated
 - prime factors of 15 = 3 * 5 have been calculated on a nuclear magnetic resonance (NMR) quantum computer
- ongoing research into realizing scalable hardware for a quantum computer
 - solid state systems
 - \circ ions
- ongoing quest for quantum algorithms
 - difficult to find efficient quantum algorithms that are better than classical ones
 - any classical algorithm can be run on a quantum computer
 - develop of novel approaches to information processing that are enabled by quantum mechanics

quantum communication (QC):

- efficient encoding of information in photons
 - super dense coding (Bennett '92)
- unconditionally secure communication using individual photons
 - quantum cryptography (Bennett, Brassard '84)

state of the art:

- quantum cryptography is used in commercial applications for distributing keys in optical fiber networks [<u>http://www.idquantique.com/</u>]
- limited by loss of photons in optical fibers
- ongoing research into quantum repeaters to extend range

1.2 Goals of Lecture:

Quantum Systems for Information Technology

- Introduction to Quantum Information Processing (QIP)
 - understand basic concepts
 - What are qubits?
 - What are their properties?
 - How to process information with quantum systems?
 - Which algorithms can a quantum computer execute efficiently?
 - get to know physical realizations
 - How to realize a quantum information processor?
 - Example: Superconducting Electronic Circuits
 - □ characterization of qubits
 - □ initialization, control and read-out of qubits
 - □ realization of quantum logic
 - gain general understanding of methods used to characterize physical realizations of quantum systems
 - learn how to evaluate the physical properties and prospects of different qubit implementations
 - atomic qubits
 - photonic qubits
 - spin qubits
 - semiconductor qubits
 - ...

1.3 Structure of Course:

Quantum Systems for Information Technology

- Introduction to Quantum Information Processing (QIP)
 - basic concepts
 - qubits and their properties
 - single qubit control and measurement
 - multiple qubits
 - qubit/qubit interactions and logical operations
 - basic quantum algorithms
 - Deutsch-Josza
 - Teleportation
 - later: basic principles of factorization (Shor) and search algorithms (Grover)
- Quantum Systems for Information Processing
 - qubits based on superconducting quantum electronic circuits
 - realizations of qubits in electronic circuits
 - □ harmonic oscillators
 - □ types of superconducting qubits
 - □ qubit initialization
 - measurement of the qubit state
 - □ dispersive read-out
 - □ other types of state measurements
 - □ spectroscopy
 - qubit state control and basic time-resolved measurements
 - Rabi oscillations
 - □ Ramsey fringes
 - \Box spin echo

QSIT09.V01 Page 9

Structure:

Quantum Systems for Information Technology

- Quantum Systems for Information Processing
 - qubits based on superconducting quantum electronic circuits (continued)
 - decoherence
 - $\hfill\square$ sources of decoherence
 - $\hfill\square$ improving coherence
 - quantum state tomography
 - □ single and two-qubit read-out
 - two-qubit interactions
 - □ realization of logic gates
 - summary
 - physical systems for QIP
 - atomic qubits
 - \square ions
 - □ neutral atoms
 - spin qubits
 - $\hfill\square$ nuclear spins
 - \Box electron spins
 - semiconductor quantum dots
 - □ electrostatic quantum dots
 - $\hfill\square$ self-assembled systems
 - qubit/photon interactions
 - □ cavity quantum electrodynamics