2.0 Basic Elements of a Quantum Information Processor

2.1 Classical information processing

2.1.1 The carrier of information

- binary representation of information as bits (Binary digITs).
- classical bits can take values either 0 or 1
- information is represented (and stored) in a physical system
 - for example, as a voltage level at the input of a transistor in a digital circuit
- in Transistor-Transistor-Logic (TTL)
 - \circ "low" = logical 0 = 0 0.8 V
 - "high" = logical 1 = 2.2 5 V
- similar in other approaches
 - CMOS: complementary metal oxide semiconductor
 - o ECL: emitter coupled logic
- information is processed by operating on bits using physical processes
 - o e.g. realizing logical gates with transistors

2.1.2 Processing information with classical logic

- decomposition of logical operations in single bit and two-bit operations

- trivial single bit logic gate: Identity

- non-trivial single bit logic gate: NOT

- circuit representation

IN OUT

1 1 1 0 0

truth table of operation

0 1 1

- representation of time evolution of information
- each wire represents a bit and transports information in time
- each gate operation represented by a symbol changes the state of the bit

2.1.3 The universal two-bit logic gate

- logical operations between two bits: AND, OR, XOR, NOR ...
 - o can all be implemented using NAND gates

- Negation of AND : NAND

AND followed by NOT

truth table

- circuit representation of the NAND gate:

Universality of the NAND gate:

- Any function operating on bits can be computed using NAND gates.
- o Therefore NAND is called a universal logic gate.

read: Nielsen, M. A. & Chuang, I. L., QC and QI, chapter 3, Cambridge University Press, (2000)

For quantum computation a set of universal gates has been identified

 single qubit operations and the CNOT gate form a universal set of gates for operation of a quantum computer

2.1.4 Circuit representation

• Any computable function can be represented as a circuit composed of universal gates acting on a set of input bits generating a set of output bits.

out put

logical circuit computing a function

- properties of classical circuits representing a function
 - wires preserve states of bits
 - FANOUT: single input bit can be copied
 - additional working bits (ancillas) are allowed
 - CROSSOVER: interchange of the value of two bits
 - AND, XOR or NOT gates operate on bits
 - can be replaced by NAND gates using ancillas and FANOUT

Note:

- number of output bits can be smaller than number of input bits
 - information is lost, the process is not reversible
- no loops are allowed
 - the process has to be acyclic
- A similar circuit approach is useful to describe the operation of a quantum computer.

 - Can quantum information be copied?
 - Our How to make two-bit logic reversible?
 - What is a set of universal gates?

2.1.5 Conventional classical logic versus quantum logic

Conventional electronic circuits for information processing

- work according to the laws of classical physics
- o quantum mechanics does not play a role in information processing

However:

- some devices used for information processing (LASERs, tunnel diodes, semiconductor heterostructures)
 operate using quantum mechanical effects on a microscopic level
- but macroscopic degrees of freedom (currents, voltages, charges) do usually not display quantum properties

2.2 Basic Components of a Generic Quantum Processor

2.2.1 The 5 DiVincenzo Criteria for Implementation of a Quantum Computer:

- #1. A scalable physical system with well-characterized qubits.
- #2. The ability to initialize the state of the qubits.
- #3. Long (relative) decoherence times, much longer than the gate-operation time.
- #4. A universal set of quantum gates.
- #5. A qubit-specific measurement capability.

in the standard (circuit approach) to quantum information processing (QIP)

plus two criteria requiring the possibility to transmit information:

- #6. The ability to interconvert stationary and mobile (or flying) qubits.
- #7. The ability to faithfully transmit flying qubits between specified locations.

DiVincenzo, D., Quantum Computation, Science 270, 255 (1995)

2.3 Quantum Bits

2.3.1 Classical Bits versus Quantum Bits

classical bit (binary digit)

can take values 0 or 1

 realized e.g. as a voltage level 0 V or 5 V in a circuit qubit (quantum bit) [Schumacher '95]

 can take values 0 and 1 'simultaneously'

- realized as the quantum states of a physical system
- we will explore algorithms where the possibility to generate such states of the information carrying bit are essential

Schumacher, B., Quantum coding, *Phys. Rev. A* **51**, 2738-2747 (1995)

2.3.2 Definition of a Quantum Bit

Quantum bits (qubits) are quantum mechanical systems with two distinct quantum mechanical states.

Qubits can be realized in a wide variety of physical systems displaying quantum mechanical properties.

- o atoms, ions, molecules
- electronic and nuclear magnetic moments
- charges in semiconductor quantum dots
- o charges and fluxes in superconducting circuits
- o and many more ...

A suitable realization of a qubit should fulfill the so called **DiVincenzo criteria**.

Quantum Mechanical Description of a Qubit

A qubit has internal states that are represented as vectors in a 2-dimensional Hilbert space. A set of possible qubit (computational) basis states is:

Quantum Mechanics Reminder:

QM postulate I: The quantum state of an isolated physical system is completely described by its state vector in a complex vector space with a inner product (a **Hilbert Space** that is). The state vector is a unit vector in that space.

Note:

This mathematical representation of a qubit allows us to consider its abstract properties independent of its actual physical realization.

2.3.3 Superposition States of a Qubit

A quantum bit can take values (quantum mechanical states) |ψ>

or both of them at the same time in which case the qubit is in a superposition of states

when the state of a qubit is measured one will find

107 with probability
$$|\alpha|^2 = \alpha \alpha^*$$
117 " $|B|^2 = \beta \beta^*$

where the normalization condition is

on is
$$(4|4) = |\alpha|^2 + |\beta|^2 = 1$$

with $(4| = |4|)^+ = \alpha^* < 0| + \beta^* < 1| = (\alpha^*\beta^*)$

This just means that the sum over the probabilities of finding the qubit in any state must be unity.

Example:
$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
 equal superposition state

2.3.4 Bloch sphere representation of qubit state space

alternative representation of qubit state vector useful for interpretation of qubit dynamics

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$= e^{i\gamma} \left[\cos \frac{\theta}{2} |0\rangle + e^{i\gamma} \sin \frac{\theta}{2} |1\rangle \right] \qquad (9) \text{ polar angle}$$

$$= e^{i\gamma} \left[\cos \frac{\theta}{2} |0\rangle + e^{i\gamma} \sin \frac{\theta}{2} |1\rangle \right] \qquad (9) \text{ polar angle}$$

$$= e^{i\gamma} \left[\cos \frac{\theta}{2} |0\rangle + e^{i\gamma} \sin \frac{\theta}{2} |1\rangle \right] \qquad (9) \text{ polar angle}$$

$$= e^{i\gamma} \left[\cos \frac{\theta}{2} |0\rangle + e^{i\gamma} \sin \frac{\theta}{2} |1\rangle \right] \qquad (9) \text{ polar angle}$$

$$= e^{i\gamma} \left[\cos \frac{\theta}{2} |0\rangle + e^{i\gamma} \sin \frac{\theta}{2} |1\rangle \right] \qquad (9) \text{ polar angle}$$

$$= e^{i\gamma} \left[\cos \frac{\theta}{2} |0\rangle + e^{i\gamma} \sin \frac{\theta}{2} |1\rangle \right] \qquad (9) \text{ polar angle}$$

unit vector pointing at the surface of a sphere:

- ground state |0> corresponds to a vector pointing to the north pole
- excited state |1> corresponds to a vector pointing to the south pole
- equal superposition state (|0> + e^{iφ}|1>)/2^{1/2} is a vector pointing to the equator

2.4 Single Qubit Logic Gates

2.4.1 Quantum circuits for single qubit gate operations

operations on single qubits:

bit flip
$$|0\rangle \longrightarrow |1\rangle; |1\rangle \longrightarrow |0\rangle$$

$$|0\rangle \longrightarrow |1\rangle; |1\rangle \longrightarrow |1\rangle$$
bit flip*
$$|0\rangle \longrightarrow |1\rangle; |1\rangle \longrightarrow |1\rangle$$
phase flip
$$|0\rangle \longrightarrow |0\rangle; |1\rangle \longrightarrow |1\rangle$$
identity

any single qubit operation can be represented as a rotation on a Bloch sphere

2.4.2 Pauli matrices

The action of the single qubit gates discussed before can be represented by Pauli matrices acting on the computational basis states:

bit flip (NOT gate)	$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} ; X \mid 0 \rangle = 1\rangle ; X \mid 1 \rangle = 0\rangle$
bit flip*(with extra phase)	$(01)^{-2}(11)(0) = (0)(0) = (0)(0)$
phase flip	2 = (10); 210) = 10); 211) = -11)
identity	$T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} ; T(0) = 10) ; T(1) = 11$
all are unitary:	$U = X, Y, Z, I$: $U^{\dagger}U = I$

exercise: calculate eigenvalues and eigenvectors of all Pauli matrices and represent them on the Bloch sphere

2.4.3 The Hadamard gate

a single qubit operation generating superposition states from the qubit computational basis states

matrix representation of Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \left(\frac{1}{1-1} \right) = \frac{1}{\sqrt{2}} \left(X + Z \right) \qquad ; \quad H^{\dagger}H = I$$

exercise: write down the action of the Hadamard gate on the computational basis states of a qubit.

2.5 Dynamics of Quantum Systems

2.5.1 The Schrödinger equation

QM postulate: The time evolution of a state $|\psi\rangle$ of a closed quantum system is described by the **Schrödinger** equation

where *H* is the hermitian operator known as the **Hamiltonian** describing the closed system.

Reminder: A **closed quantum system** is one which does not interact with any other system.

general solution for a time independent Hamiltonian *H*:

$$|\Psi(t)\rangle = \exp\left[\frac{-iHt}{\hbar}\right]|\Psi(0)\rangle$$

example: e.g. electron spin in a field

energy level diagram:

Hamiltonian for spin 1/2 in a magnetic field: $H = -\frac{\hbar \omega}{2} \ge$

$$H = -\frac{\hbar\omega}{2} (|0\rangle \langle 0| - |1\rangle \langle 1|)$$

$$|\Psi(0)\rangle = |0\rangle - |\Psi(1)\rangle = e^{\frac{i\omega}{2}t} |0\rangle$$

$$|\Psi(0)\rangle = |1\rangle - |\Psi(1)\rangle = e^{-\frac{i\omega}{2}t} |1\rangle$$

$$|\Psi(0)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$= \frac{1}{\sqrt{2}} e^{\frac{i\omega}{2}t} (|0\rangle + e^{-\frac{i\omega}{2}t} |1\rangle$$

$$|\Psi\rangle - e^{\frac{i\omega}{2}t} (\cos \frac{2}{2} |0\rangle + e^{\frac{i\omega}{2}t} \sin \frac{2}{2} |1\rangle)$$

interpretation of dynamics on the Bloch sphere:

this is a rotation around the equator of the Bloch sphere with Larmor precession frequency ω

=1) 0= T 1 9=-wt

2.5.2 Rotation of qubit state vectors and rotation operators

when exponentiated the Pauli matrices give rise to rotation matrices around the three orthogonal axis in 3-dimensional space.

$$R_{x}(\theta) = e^{-i\theta X/2} = \cos \frac{\theta}{2} \mathbf{I} - i \sin \frac{\theta}{2} \mathbf{X} = \begin{pmatrix} \cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix}$$

$$R_{y}(\theta) = e^{-i\theta Y/2} = \cos \frac{\theta}{2} \mathbf{I} - i \sin \frac{\theta}{2} \mathbf{Y} = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix}$$

$$R_{z}(\theta) = e^{-i\theta Z/2} = \cos \frac{\theta}{2} \mathbf{I} - i \sin \frac{\theta}{2} \mathbf{Y} = \begin{pmatrix} e^{-i\theta/2} & o \\ o & e^{-i\theta/2} \end{pmatrix}$$
If the Pauli matrices X, Y or Z are present in the Hamiltonian of a

If the Pauli matrices **X**, **Y** or **Z** are present in the Hamiltonian of a system they will give rise to rotations of the qubit state vector around the respective axis.

exercise: convince yourself that the operators $R_{x,y,z}$ do perform rotations on the qubit state written in the Bloch sphere representation.

2.5.3 Preparation of specific qubit states

initial state | 0>:

prepare excited state by rotating around **x** or **y** axis:

 X_{π} pulse:

 Y_{π} pulse:

preparation of a superposition state:

 $X_{\pi/2}$ pulse:

 $Y_{\pi/2}$ pulse:

in fact such a pulse of chosen length and phase can prepare any single qubit state, i.e. any point on the Bloch sphere can be reached