QSIT 2009- Questions 5

26. Oktober 2009

1. Density matrix of a harmonic oscillator in thermal equilibrium

A statistical mixture of pure quantum states can be described by an incoherent sum of pure states denoted by the density matrix

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| .
$$

p_{i} is the probability that the system is in the state $\left|\psi_{i}\right\rangle$, and the notation $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ denotes the outer product of the state vector $\left|\psi_{i}\right\rangle$ and its conjugate transpose $\left\langle\psi_{i}\right|$.
For example, if

$$
\left|\psi_{1}\right\rangle=(|0\rangle+\mathrm{i}|1\rangle) / \sqrt{2}=\frac{1}{\sqrt{2}}\binom{\mathrm{i}}{1},
$$

then

$$
\left\langle\psi_{1}\right|=(\langle 0|-\mathrm{i}\langle 1|) / \sqrt{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
-\mathrm{i} & 1
\end{array}\right)
$$

and

$$
\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\frac{1}{2}\binom{\mathrm{i}}{1}\left(\begin{array}{ll}
-\mathrm{i} & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \mathrm{i} \\
-\mathrm{i} & 1
\end{array}\right) .
$$

Similarly, if $\left|\psi_{2}\right\rangle=|0\rangle$ then

$$
\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|=\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

If a source produces these state with equal probabilities $\left(p_{1}=p_{2}=1 / 2\right)$ the resulting state can be described by the statistical incoherent mixture
$\rho=\frac{1}{2}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{2}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|=\frac{1}{2}\left(\frac{1}{2}\left(\begin{array}{cc}1 & \mathrm{i} \\ -\mathrm{i} & 1\end{array}\right)+\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)\right)=\left(\begin{array}{cc}\frac{1}{4} & \mathrm{i} \\ -\mathrm{i} & \frac{3}{4}\end{array}\right)$.

Let us now consider the thermal state of a harmonic oscillator. The eigenstates of a harmonic oscillator, which fulfill the Schrödinger equation $H|n\rangle=n \hbar \omega|n\rangle$, are denoted by $|0\rangle,|1\rangle \ldots,|n\rangle$ and correspond to states with n excitation quanta in the system. Neglecting the vacuum energy, the Hamiltonian $H=\hbar \omega_{r} n$, where n denotes the operator for the number of energy quanta, that is $n|0\rangle=0, n|1\rangle=1|1\rangle, n|2\rangle=2|2\rangle, \ldots$.
In thermal equilibrium with a heat bath at temperature T the probability p_{n} that the harmonic oscillator is excited to the nth state is given by the Boltzmann distribution

$$
p_{n}=\frac{\exp \left[-E_{n} /\left(k_{B} T\right)\right]}{\sum_{n} \exp \left[-E_{n} /\left(k_{B} T\right)\right]}=\left(1-\exp \left[-\frac{\hbar \omega}{k_{B} T}\right]\right) \exp \left[-\frac{n \hbar \omega}{k_{B} T}\right] .
$$

Find the density matrix which describes the equilibrium state of the harmonic oscillator.

2. Mixed State decomposition

A source produces spin- $1 / 2$ particles polarized either in the state $|\uparrow\rangle$ or in the state $|\downarrow\rangle$ with equal probability. A different source produces also spin- $1 / 2$ particles, but polarized either in the state $|+\rangle=(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$ or in the state $|-\rangle=(|\uparrow\rangle-|\downarrow\rangle) / \sqrt{2}$, also with equal probability. Can you find a measurement which can distinguish these two sources?

