Superconducting circuits I

Demonstration of conditional gate operation using superconducting charge qubits

T. Yamamoto 1,2 , Yu. A. Pashkin 2* , O. Astafiev 2 , Y. Nakamura 1,2 & J. S. Tsai 1,2

¹NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8501, Japan ²The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

nature

LETTERS

Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits

J. H. Plantenberg¹, P. C. de Groot¹, C. J. P. M. Harmans¹ & J. E. Mooij¹

Susanne Dröscher, Anna Amanatidou

Outline

Motivation

- C-NOT gate
- First realization of C-NOT gate with CPBs

C-Not gate with flux qubits

Comparison and Summary

Motivation

- Approaching the goal of quantum computation
- Fullfilling DiVincenzo criteria
- Superconducting quantum bits as building blocks for a quantum computer
- High fidelity gate operation

c-NOT gate

 Single qubit operation & c-NOT gate form a universal set of gates (→ any computation can be done using these gates)

• Definition:

"The target qubit is flipped if and only if the control qubit is in a given state"

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

The sample

Requirements:

- 2 two-level systems
- capacitive coupling between qubits
- → four-level system
- gates for independent control
- probes for read-out
- control bit tuned with B-field

Hamiltonian describing the system:

$$H = \sum_{n_1, n_2 = 0, 1} E_{n_1 n_2} \mid n_1, n_2 \rangle \langle n_1, n_2 \mid \underbrace{\frac{E_{J1}}{2} \sum_{n_2 = 0, 1} (\mid 0 \rangle \langle 1 \mid + \mid 1 \rangle \langle 0 \mid) \otimes \mid n_2 \rangle \langle n_2 \mid \underbrace{\frac{E_{J2}}{2} \sum_{n_1 = 0, 1} \mid n_1 \rangle \langle n_1 \mid \otimes (\mid 0 \rangle \langle 1 \mid + \mid 1 \rangle \langle 0 \mid)}_{}$$

Josephson coupling of box 1

Josephson coupling of box 2

Energy band diagram

Eigenenergies of system at constant values for n_{g1} and n_{g2}

(number of excess Cooper pairs on respective box)

Determining possible outcomes of different pulse schemes

→ Controlled gate operation can be implemented

Pulse scheme and C-NOT operation

- 1. Preparation of specific input state
- 2. Applying c-NOT operation

→ Creation of entangled states

Tunability and read-out

Periodic modulation of E_{J1} due to SQUID-geometry: $E_{J1} = E_{J1max} |\cos\left(\pi \frac{\phi_{ex}}{\phi_0}\right)|$

Recording JQP current through probe 1 and 2 (I is proportional to n_a)

→ read-out of state

Simulation: Time evolution of density matrix

Truth table

Read-out method does not allow for individual measurement of the four states

→ Calculation of time evolution of four perfect input states under gate operation pulse

Deviation from expected accuracy due to finite rise/fall time of pulse

 \rightarrow Improving pulse shape and the coupling E_m

Coupled qubits set-up

Requirements:

- single pair of coupled flux qubits
- Inductive coupling between qubits
- Either qubit can be control or target qubit due to symmetry
- ➤ 4 level system

Set-up:

- two '8' shape flux qubits consisting of a superconducting loop interrupted by 3 Josephson junctions
- Two SQUIDs used as switching quantum state detectors

Hamiltonian describing the system:

$$H = H_{1} + H_{2} + H_{12} = -\frac{1}{2} \left(\varepsilon_{1} \sigma_{z}^{1} + \Delta_{1} \sigma_{x}^{1} + \varepsilon_{2} \sigma_{z}^{2} + \Delta_{2} \sigma_{x}^{2} \right) + J \sigma_{z}^{1} \sigma_{z}^{2}$$

Operation of the coupled-qubit device

Energy level diagram

- four resonance frequencies
- A resonant microwave pulse induces rotations in the computational basis

$$0_{C}0_{T}, 0_{C}1_{T}, 1_{C}0_{T}, 1_{C}1_{T}$$

Sequence of operations

- Initial ground state ${}^0c^0T$
- Preparation of input states

1.
$$\frac{1}{\sqrt{2}} (00) + |10\rangle$$
 2. $\frac{1}{\sqrt{2}} (01) + |11\rangle$

- Gate operation by applying a pulse
- Analysis of the resulting density matrix with probe pulses
- Simultaneous and independent determination of the two qubit state
- Repetition of N times \longrightarrow state counts $N_{00}, N_{01}, N_{10}, N_{11}$

Tunability and read-out

Measured joint probabilities

$$P_{00}$$
, P_{01} , P_{10} , P_{11}

$$P_C = P_{10} + P_{11}$$

$$P_T = P_{01} + P_{11}$$

- Odd numbers of π rotations and C-NOT gates flips the target qubit
- It is a 1c-controlled gate

Truth table-Correction

• Input states ${}^0{}_C{}^0{}_T, {}^0{}_C{}^1{}_T \Rightarrow$ remain unaffected ${}^1{}_C{}^0{}_T, {}^1{}_C{}^1{}_T \Rightarrow$ target qubit inverted

Corrected truth table

- Correction with conditional spectroscopy measurements
- New F=0.4

Phase Factor

- Ramsey-like interference experiment on n consecutive CNOT gates
- Starting at superspositions instead of starting at eigenstates
- Additional $\pi/2$ pulse after the gate with phase difference $\Delta \varphi$ to the one before the gate

Even number of gates

Phase gate

Conclusions

- Two different implementations of CNOT gate
- Main differences:
- Charge qubits
- Capacitive coupling
- Zero-controlled gate
- Simulated truth table
- Phase unknown

- Flux qubits
- Inductive coupling
- One-controlled gate
- Measured truth table
- Phase determination

Two qubit algorithms and solid-state qubit entaglement is possible

Summary-Outlook

- Superconducting qubits are among the most promising candidates for quantum computation
- Obstacles to overcome:
 - increasing decoherence time
 - improvement of read-out fidelity
 - implementing error correction methods