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Motivation

Approaching the goal of quantum computation

Fullfilling DiVincenzo criteria

Superconducting quantum bits as building blocks for a
guantum computer

High fidelity gate operation



c-NOT gate

e Single qubit operation & c-NOT gate form a universal set of
gates

e Definition:

Jhe target qubit is flipped if and only if the control qubit is in
a given state”
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The sample

Requirements:

» 2 two-level systems
 capacitive coupling between qubits

—> four-level system

 gates for independent control
» probes for read-out
« control bit tuned with B-field
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Josephson coupling of box 1 Josephson coupling of box 2

electrostatics



Energy band diagram

Eigenenergies of system at constant
values for ng; and ng,

(number of excess Cooper pairs on respective box)

Determining possible outcomes of
different pulse schemes

—> Controlled gate operation can
be implemented

(zHD) ABisu3




Pulse scheme and C-NOT operation

1. Preparation of specific input state

2. Applying c-NOT operation
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Tunability and read-out

Periodic modulation of E; due to SQUID-geometry: E;i = Ejimaa|cos (77 (f;”“’>|
0

Recording JQP current through probe
1 and 2 (/ is proportional to n,)

- read-out of state
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Simulation: Time evolution of density matrix



Truth table

Read-out method does not allow for

individual measurement of the four 0 (S
states I

- Calculation of time evolution of o7°

four perfect input states under
gate operation pulse
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—> Improving pulse shape and the coupling E,,



Coupled qubits set-up

Requirements:

* single pair of coupled flux qubits

* Inductive coupling between qubits

* Either qubit can be control or target
gubit due to symmetry

» 4 level system

Set-up:

* two ‘8 shape flux qubits consisting of
a superconducting loop interrupted
by 3 Josephson junctions

« Two SQUIDs used as switching
guantum state detectors

Hamiltonian describing the system:
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Operation of the coupled-qubit device

Energy level diagram

e four resonance frequencies

 Aresonant microwave pulse induces
rotations in the computational basis
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Sequence of operations

0.0;

* Initial ground state
* Preparation of input states

1. 715(00>+|10>) 2. 715 (01>+|11>)
* Gate operation by applying a pulse

* Analysis of the resulting density
matrix with probe pulses

* Simultaneous and independent
determination of the two qubit state

* Repetition of N times = state counts
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Tunability and read-out

* Measured joint probabilities
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* 0Odd numbers of t rotations and C-
NOT gates flips the target qubit
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Truth table-Correction
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* Inputstates 0.0.,0.1. =  remain unaffected
1.0,.,1.1. = target qubit inverted
Corrected truth table
* Correction with conditional spectroscopy measurements
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Phase Factor

Ramsey-like interference
experiment on n consecutive
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+Two different implementations of CNOT gate
+Main differences:

* Charge qubits * Flux qubits

* Capacitive coupling * Inductive coupling

e Zero-controlled gate * One-controlled gate
* Simulated truth table * Measured truth table
* Phase unknown * Phase determination

Two qubit algorithms and solid-state qubit entaglement
Is possible



Summary-Outlook

e Superconducting qubits are among the most promising candidates for
guantum computation

* Obstacles to overcome:
" increasing decoherence time
“> improvement of read-out fidelity
> implementing error correction methods



