Quantum Logic Gates with Trapped Ions

ETH Zürich Camille Estienne 11-30-2009

- **1. Trapping Ions**
- 2. Cooling Ions
- **3. Manipulating Ions States**
- 4. The Controlled-NOT Gate

1. Trapping Ions

- 1.1. Basic Ideas
- Ions are charged atoms: electromagnetic fields can be used to confine them.
- Earnshaw' Theorem: No stable confinement in three dimensions with static fields.
- Paul Trap: radio frequency quadrupole field

1. Trapping Ions

1.2. The Linear Paul Trap

Schematic Representation of a Linear Paul Trap

1. Trapping Ions

1.3. Energy Levels of a Trapped Ion

Energy levels of a two-levels trapped ion

2. Cooling lons

2.1. Basic Ideas

Reducing the momentum of the ion by creating an asymmetry in the absorption-emission cycle

Radiation Pressure

Doppler Effect

2. Cooling lons

2.2. Doppler cooling

Weak Binding Limit: the ion undergoes a large number of cooling cycles during one oscillation period in the trap

2.2. Resolved Sideband Cooling

Strong Binding Limit: the ion goes through a large number of oscillation periods during one cooling cycle

3.1. A simple scheme

Ions chain in a linear Paul trap Individual ions can be addressed by focused lasers Ions are coupled through collective motional modes

3.2. Interaction with Electromagnetic Fields

$$\Psi(t) = \begin{bmatrix} \cos\Omega_{n',n}t & -i\,\mathrm{e}^{\,i[\phi + \frac{\pi}{2}|n'-n|]}\sin\Omega_{n',n}t \\ -i\,\mathrm{e}^{-i[\phi + \frac{\pi}{2}|n'-n|]}\sin\Omega_{n',n}t & \cos\Omega_{n',n}t \end{bmatrix} \Psi(0)$$

Evolution of the ion state under the influence of a propagating electromagnetic field

3.3. Playing with the Laser Frequency

Laser on carrier transition: manipulation of the internal state Laser on a sideband: entanglement of internal states and motional states

3.4. Playing with the Pulse Duration

- π pulse: population inversion
- 2π pulse: sign change
- $\pi/2$ pulse: superposition of both states

4.1. Truth Table

Input state \rightarrow Output state $|0\rangle|\downarrow\rangle \rightarrow |0\rangle|\downarrow\rangle$ $|0\rangle|\uparrow\rangle \rightarrow |0\rangle|\uparrow\rangle$ $|1\rangle|\downarrow\rangle \rightarrow |1\rangle|\uparrow\rangle$ $|1\rangle|\downarrow\rangle \rightarrow |1\rangle|\downarrow\rangle$.

State of the Target Bit is flipped when the Control Bit is 1

4.2. Realization with a single Ion <u>Control Bit</u>: Quantized State of Motion <u>Target Bit</u>: Internal State of the Ion

C-NOT Gate can be implemented by applying a series of three pulses to the ion:

- 1. $\pi/2$ pulse on the carrier transition
- 2. 2π pulse on the first blue sideband
- 3. $\pi/2$ pulse on the carrier transition (with a phaseshift of π with respect to the first one)

4.3. Realization with a Single Beryllium Ion

Level scheme of Beryllium Ion

4.3. Realization with a Single Beryllium Ion

C-NOT truth table measurements

4.4. Realization with Two Ions

<u>Control Bit</u>: Internal State of First Ion <u>Target Bit</u>: Internal State of Second Ion

C-NOT Gate can be implemented by applying a series of three pulses to the ion:

- 1. Control Ion: π pulse on the first red sideband
- 2. Target Ion: C-NOT gate
- 3. Control Ion: π pulse on the first red sideband (with a phase shift of π with respect to 1.)