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Introduction to quantum dots
● Definition: Charge carriers  

that are confined in all three 
dimensions by:

– Electrical fields
– Growth (islands)
– Crystal lattice

● Quantised energy levels that 
can be engineered

● ± easy to fabricate
→ Good candidates for qubit 
implementation

Hanson, R & Awschalom, DD
Coherent manipulation of single spins in semiconductors
Nature 453, 1043 (2008)



  

Experimental Setup
● Two coupled 

semiconductor quantum 
dots defined by surface 
gates

● Bext establish Coulomb 
blockade

● Oscillating magnetic 
field BAC (RF signal on 
coplanar stripline)

● → ESR induced spin 
rotation



  

Experimental principle

● Detection by electrical transport measurement in 
Spin blockade regime

●  Current flow depends on relative spin state
●  For spin state S = ↑↓ - ↓↑   (singlet state S):       

 → left electron tunnels to the right dot
 → current flow through the double dot



  

Principle of spin blockade

● Double dot singlet (S) and triplet states (T0,±)

● Bext>> 0,
T± split of in energy
→ Spin blockade

 for ↑↑ and ↓↓
● T0 and S still admixed

● ↑↓ = T0 + S left electron moves to right dot



  

● Observation of current 
depending on:

– magnetic field
– RF frequency

● From linear dependence 
of peak position on 
frequency:
Estimation of electron 
spin g-factor ~ 0.35 

Results



  

Coherent Rabi Oscillations
● Applying RF bursts with variable length
● Pulse the system into Coulomb blockade during spin 

manipulation
→ eliminates decoherence due to tunneling          
processes during spin rotation 



  

● Current oscillates with RF burst length
● Frequency depends linearly on burst amplitude 

→ Rabi Oscillations
● Note: Oscillations visible up to 1 μs

Results



  

QM description of the process

● Used for finding an 
appropriate fit to the 
data

● Estimating the best 
flipping angle (131°)
→ Fidelity of 73%



  

Time evolution of spin states

● Transitions between ↑ and ↓ for both
● Both resonant → current oscillations twice as fast
● Not observed in Exp. → only single spins excited

RF on resonant with 
both spins

RF on resonant 
with right spin only



  

Motivation for E-Field induced 
manipulation

● E-Field generation can be done by exciting a local 
gate

● Greater spatial selectivity than B-Fields
→ easier to address individual spins

Problem: No direct coupling between E-Field and Spin



  

Experimental Setup
● Same device

● RF-signal on the rightmost gate 
induces E-field in right dot

● → E-field induced spin rotation 



  

Measurement
● Pulse double dot into coulomb blockade
● Apply microwave burst to gate
● Measure average current flow



  

Coherent spin control
● Variable burst length reveals 

oscillations in measured 
current flow

● Linear scaling of oscillation 
frequency with driving 
amplitude
→ Rabi oscillations



  

What caused the oscillations?
● Possible answers:

– Magnetic field

– B-field gradient

– g-tensor modulation

– Spatial variation of 
nuclear field

➔ Too small

➔ Not applied

➔ g-tensor anisotropy
very small in GaAs

➔ Measurement time 
much longer than 
stable time of nuclear 
field gradient

→ Spin-orbit interaction

B

∇ g

∇B

∇BN



  

Spin-orbit interaction
● E-field periodically displaces 

electron wave function
→ oscillating effective B-field 
perpendicular to the external B-
field
→ Rabi oscillations

H SO=α  p xσ y− p yσ xβ −px σ x p y σ y



  

Results Summary

Magnetic field:
● Driven coherent electron spin rotation
● π/2 rotations of 27 ns

(Rabi period 108 ns)
● Fidelity of 73 % (due to flipping angle 131°)

Electric field:
● π/2 rotation in 55 ns



  

Limiting Factors

Magnetic driving
● Nuclear field fluctuations

● Cotunneling

● Inelastic transitions to 
the S(0,2) state

Electrical driving
● Nuclear field fluctuations

● Photon-assisted 
tunneling



  

Improvement possibilities

Bext

● Suppressing photon-assisted tunneling by higher 
tunnel barriers

● Working at higher resp. 

● Using materials with stronger spin-orbit interaction

● Optimise gate design

● Composite pulses to improve fidelity

BRF



  

Outlook

● Realisation of multiple spin systems with quantum 
dots

● Controllable addressing of spins in many dot systems 
using electric fields

● Implementation of simple quantum algorithms 

http://imgs.xkcd.com/comics/quantum_teleportation.png



  

Thank you for your attention

Questions??
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