Spin Qubits in Quantum dots I

Driven coherent oscillations of a single electron spin in a quantum dot

Coherent Control of a Single Electron Spin with Electric Fields

F.H. L. Koppens, K.C. Nowack et al.

Tobias Rosskopf, Felix Geldmacher

Outline

- 1. Quantum Dots
- 2. Magnetically driven oscillations
 - 1. Experimental setup and measurements
 - 2. Principle
 - 3. Results and QM description
- 3. Electrically driven oscillations
 - 1. Motivation
 - 2. Experimental setup and measurement
 - 3. Results and QM description
- 4. Comparison of the two principles
- 5. Conclusion and Outlook

Introduction to quantum dots

- Definition: Charge carriers that are confined in all three dimensions by:
 - Electrical fields
 - Growth (islands)
 - Crystal lattice
- Quantised energy levels that can be engineered
- ± easy to fabricate
 - → Good candidates for qubit implementation

Hanson, R & Awschalom, DD Coherent manipulation of single spins in semiconductors Nature 453, 1043 (2008)

Experimental Setup

- Two coupled semiconductor quantum dots defined by surface gates
- B_{ext} establish Coulomb blockade
- Oscillating magnetic field B_{AC} (RF signal on coplanar stripline)
- → ESR induced spin rotation

Experimental principle

- Detection by electrical transport measurement in Spin blockade regime
- Current flow depends on relative spin state
- For spin state S = ↑↓ ↓↑ (singlet state S):
 - → left electron tunnels to the right dot
 - → current flow through the double dot

Principle of spin blockade

- Double dot singlet (S) and triplet states (T_{0.±})
- B_{ext} >> 0,
 T_± split of in energy
 - → Spin blockade for ↑↑ and ↓↓
- T₀ and S still admixed

• $\uparrow \downarrow = T_0 + S$ left electron moves to right dot

500 400 P≈ -16 dBm 9 200 100 RF off 0 Magnetic field (mT)

From linear dependence of peak position on frequency:

Estimation of electron spin g-factor ~ 0.35

Results

- Observation of current depending on:
 - magnetic field
 - RF frequency

Coherent Rabi Oscillations

- Applying RF bursts with variable length
- Pulse the system into Coulomb blockade during spin manipulation
 - → eliminates decoherence due to tunneling processes during spin rotation

Results

- Current oscillates with RF burst length
- Frequency depends linearly on burst amplitude
 - → Rabi Oscillations
- Note: Oscillations visible up to 1 µs

QM description of the process

$$H = g\mu_B(B_{ext} + B_{N,L})S_L + g\mu_B(B_{ext} + B_{N,R})S_R + g\mu_B\cos(\omega t)B_{AC}(S_L + S_R)$$

- Used for finding an appropriate fit to the data
- Estimating the best flipping angle (131°)
 - → Fidelity of 73%

Time evolution of spin states

RF on resonant with right spin only

$$|\uparrow\rangle|\uparrow\rangle \rightarrow |\uparrow\rangle \frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}} \rightarrow |\uparrow\rangle|\downarrow\rangle \rightarrow$$

$$|\uparrow\rangle \frac{|\uparrow\rangle - |\downarrow\rangle}{\sqrt{2}} \rightarrow |\uparrow\rangle |\uparrow\rangle$$

RF on resonant with $|\uparrow\rangle|\uparrow\rangle \rightarrow \frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}} \rightarrow |\downarrow\rangle|\downarrow\rangle \rightarrow$ both spins

$$\frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}} \frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}} \rightarrow |\downarrow\rangle |\downarrow\rangle \rightarrow$$

$$\frac{|\uparrow\rangle - |\downarrow\rangle|\uparrow\rangle - |\downarrow\rangle}{\sqrt{2}} \rightarrow |\uparrow\rangle|\uparrow\rangle$$

- Transitions between ↑ and ↓ for both
- Both resonant → current oscillations twice as fast
- Not observed in Exp. \rightarrow only single spins excited

Motivation for E-Field induced manipulation

- E-Field generation can be done by exciting a local gate
- Greater spatial selectivity than B-Fields
 - → easier to address individual spins

Problem: No direct coupling between E-Field and Spin

Experimental Setup

- Same device
- RF-signal on the rightmost gate induces E-field in right dot

→ E-field induced spin rotation

Measurement

- Pulse double dot into coulomb blockade
- Apply microwave burst to gate
- Measure average current flow

Coherent spin control

- Variable burst length reveals oscillations in measured current flow
- Linear scaling of oscillation frequency with driving amplitude
 - → Rabi oscillations

What caused the oscillations?

- Possible answers:
 - Magnetic field

 $\vec{B} \rightarrow \text{Too small}$

- B-field gradient
- $\nabla \vec{B}$ Not applied
- g-tensor modulation ∇g g-tensor anisotropy
 - very small in GaAs
- Spatial variation of nuclear field $\nabla \overrightarrow{B_N}$
- → Measurement time much longer than stable time of nuclear field gradient

→ Spin-orbit interaction

Spin-orbit interaction

- E-field periodically displaces electron wave function
 - → oscillating effective B-field perpendicular to the external Bfield
 - → Rabi oscillations

$$H_{SO} = \alpha (p_x \sigma_y - p_y \sigma_x) + \beta (-p_x \sigma_x + p_y \sigma_y)$$

Results Summary

Magnetic field:

- Driven coherent electron spin rotation
- π/2 rotations of 27 ns
 (Rabi period 108 ns)
- Fidelity of 73 % (due to flipping angle 131°)

Electric field:

• π/2 rotation in 55 ns

Limiting Factors

Magnetic driving

- Nuclear field fluctuations
 Nuclear field fluctuations
- Cotunneling
- Inelastic transitions to the S(0,2) state

Electrical driving

- Photon-assisted tunneling

Improvement possibilities

- Suppressing photon-assisted tunneling by higher tunnel barriers
- Working at higher B_{ext} resp. B_{RF}
- Using materials with stronger spin-orbit interaction
- Optimise gate design
- Composite pulses to improve fidelity

Outlook

- Realisation of multiple spin systems with quantum dots
- Controllable addressing of spins in many dot systems using electric fields
- Implementation of simple quantum algorithms

http://imgs.xkcd.com/comics/quantum_teleportation.png

Thank you for your attention

Questions??