## State reconstruction single qubit

3 measurements for 3 coefficients $r_{x}, r_{y}, r_{z}$ of

$$
\rho=\frac{1}{2}\left(\mathrm{id}+r_{x} \sigma_{x}+r_{y} \sigma_{z}+r_{z} \sigma_{z}\right)
$$



$\operatorname{Im}[\rho]$

|e)

## State reconstruction single qubit

3 measurements for 3 coefficients $r_{x}, r_{y}, r_{z}$ of

$$
\rho=\frac{1}{2}\left(\mathrm{id}+r_{x} \sigma_{x}+r_{y} \sigma_{z}+r_{z} \sigma_{z}\right)
$$

- Measurement along z-axis: $r_{z}=\left\langle\sigma_{z}\right\rangle=\operatorname{Tr}\left[\rho \sigma_{z}\right]$

|e)


## State reconstruction single qubit

3 measurements for 3 coefficients $r_{x}, r_{y}, r_{z}$ of

$$
\rho=\frac{1}{2}\left(\mathrm{id}+r_{x} \sigma_{x}+r_{y} \sigma_{z}+r_{z} \sigma_{z}\right)
$$

- Measurement along z-axis: $r_{z}=\left\langle\sigma_{z}\right\rangle=\operatorname{Tr}\left[\rho \sigma_{z}\right]$
-Rotation + measurement: $\quad r_{x}=\left\langle\sigma_{x}\right\rangle=\operatorname{Tr}\left[\left(\frac{\pi}{2}\right)_{y} \rho\left(\frac{\pi}{2}\right)_{-y} \sigma_{z}\right]$


$\operatorname{Im}[\rho]$

|e)


## State reconstruction single qubit

3 measurements for 3 coefficients $r_{x}, r_{y}, r_{z}$ of

$$
\rho=\frac{1}{2}\left(\mathrm{id}+r_{x} \sigma_{x}+r_{y} \sigma_{z}+r_{z} \sigma_{z}\right)
$$

- Measurement along z-axis: $r_{z}=\left\langle\sigma_{z}\right\rangle=\operatorname{Tr}\left[\rho \sigma_{z}\right]$
-Rotation + measurement: $\quad r_{x}=\left\langle\sigma_{x}\right\rangle=\operatorname{Tr}\left[\left(\frac{\pi}{2}\right)_{y} \rho\left(\frac{\pi}{2}\right)_{-y} \sigma_{z}\right]$
-Rotation + measurement: $\quad r_{y}=\left\langle\sigma_{y}\right\rangle=\operatorname{Tr}\left[\left(\frac{\pi}{2}\right)_{x} \rho\left(\frac{\pi}{2}\right)_{-x} \sigma_{z}\right]$


1g)
|g>
|e)
$\operatorname{Im}[\rho]$

|g>
Ig)
|e)

