Cavity QED with Superconducting Circuits

Circuit Quantum Electrodynamics

elements

- the cavity: a superconducting 1D transmission line resonator with large vacuum field E_o and long photon life time $1/\kappa$
- the artificial atom: a Cooper pair box with large E_J/E_C with large dipole moment *d* and long coherence time 1/γ

voltage across resonator in vacuum state (n = 0)

 $V_{0,\rm rms} = \sqrt{\frac{\hbar\omega_r}{2C}} \approx 1\,\mu\rm{V}$

 $E_0 = rac{V_{0,\mathrm{rms}}}{b} pprox 0.2\,\mathrm{V/m}$

harmonic oscillator

$$H_r=\hbar\omega_r\left(a^{\dagger}a+rac{1}{2}
ight)$$

 $imes 10^6$ larger than E_0 in 3D microwave cavity

for $\omega_r/2\pi pprox 6\,{
m GHz}$ ($C\sim 1\,{
m pF}$), $bpprox 5\,\mu{
m m}$ ΞH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Resonator Quality Factor and Photon Lifetime

resonance frequency:

$$\nu_r = 6.04 \,\mathrm{GHz}$$

quality factor:

$$Q = \frac{\nu_r}{\delta\nu_r} \approx 10^4$$

photon decay rate:

$$\frac{\kappa}{2\pi} = \frac{\nu_r}{Q} \approx 0.8 \,\mathrm{MHz}$$

photon lifetime:

$$T_{\kappa} = 1/\kappa \approx 200 \,\mathrm{ns}$$

Qubit/Photon Coupling in a Circuit

qubit coupled to resonator

coupling strength:

 $g \gg [\kappa, \gamma]$ possible!

large effective dipole moment

 $d=\frac{\hbar g}{E_0}\sim 10^2\dots 10^4\,ea_0$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Circuit QED with One Photon

superconducting cavity QED circuit

A. Wallraff, ..., R. J. Schoelkopf, Nature (London) 431, 162 (2004)

How to Measure Single Microwave Photons

• average power to be detected

$$\rightarrow \langle n=1 \rangle \hbar \omega_r \kappa / 2 \approx P_{RF} = -140 \,\mathrm{dBm} = 10^{-17} \,\mathrm{W}$$

- efficient with cryogenic low noise HEMT amplifier ($T_N = 6 \text{ K}$)
- prevent leakage of thermal photons (cold attenuators and circulators)

Read-Out ...

... of a superconducting charge qubit

Qubit Read Out

Read Out Strategies

demolition measurements (switching/latching measurements)

Quantronium (Saclay, Yale)

Flux Qubit (TU Delft, NEC)

Phase Qubit (NIST, UCSB)

quantum non-demolition (QND) measurements

Yale (circuit QED) also: Chalmers, Delft, Yale (JBA)

Non-Resonant Qubit-Photon Interaction

approximate diagonalization in the dispersive limit $|\Delta| = |\omega_a - \omega_r| \gg g$

Non-Resonant Qubit-Photon Interaction

approximate diagonalization in the dispersive limit $|\Delta|=|\omega_a-\omega_r|\gg g$

Qubit Spectroscopy with Dispersive Read-Out ...

... additional material

Measurement Technique

- measurement of microwave transmission amplitude T and phase ϕ

- intra-cavity photon number controllable from $n\sim 10^3$ to $n\ll 1$

Dispersive Shift of Resonance Frequency

sketch of qubit level separation:

 $\Delta = 2\pi\delta > g$

measured resonator transmission amplitude and phase:

Qubit Spectroscopy with Dispersive Read-Out

CW Spectroscopy of Cooper Pair Box

Line Shape

excited state population (steady-state Bloch equations):

$$P_e = 1 - P_g = \frac{1}{2} \frac{\Omega_R^2 T_1 T_2}{1 + (T_2 \Delta_{s,a})^2 + \Omega_R^2 T_1 T_2}$$

- fixed drive $P_{
 m s} \propto \Omega_R^2 = n_{
 m s} \omega_{
 m vac}^2$
- varying $\Delta_{\mathbf{s},\mathbf{a}} = \omega_{\mathbf{s}} \widetilde{\omega}_{\mathbf{a}}$
- weak continuous measurement $(n\sim 1)$
- at charge degenracy ($n_{
 m g}=1$)

peak depth \rightarrow population (saturation):

$$P_e = 1 - P_g = rac{1}{2} rac{\Omega_R^2 T_1 T_2}{1 + \Omega_R^2 T_1 T_2}$$

D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Girvin, and Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich R. J. Schoelkopf, *Phys. Rev. Lett.* **94**, 123062 (2005)

Line Width

line width \rightarrow coherence time:

$$2\pi\delta
u_{
m HWHM}=rac{1}{T_2'}=\sqrt{rac{1}{T_2^2}+\Omega_R^2rac{T_1}{T_2}}$$

$$\operatorname{Min}(\delta \nu_{\mathrm{HWHM}}) \sim 750 \,\mathrm{kHz} \rightarrow \mathrm{T}_2 > 200 \,\mathrm{ns}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Girvin, and R. J. Schoelkopf, *Phys. Rev. Lett.* **94**, 123062 (2005)

Coherent Control of a Qubit in a Cavity

- qubit state represented on a Bloch sphere
- vary length, amplitude and phase of microwave pulse to control qubit state

High Visibility Rabi Oscillations

ΞH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio,J. Majer, S. M. Girvin, and R. J. Schoelkopf,*Phys. Rev. Lett.* **95**, 060501 (2005)

Measurements of Coherence Time

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Coherence Time Measurement: Ramsey Fringes

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich A. Wallraff et al., Phys. Rev. Lett. 95, 060501 (2005)

Decoherence additional material

Sources of Decoherence

- remove sources of decoherence
 - improve materials
- use dynamic methods to counteract specific sources of decoherence
 - spin echo
 - geometric manipulations
- reduce sensitivity of quantum systems to specific sources of decoherence
 - make use of symmetries in design and operation

Tomography of a Spin Echo

Coupling Superconducting Qubits and Generating Entanglement using Sideband Transitions

2-Qubit Chip

- Two near identical superconducting qubits
- Local control of magnetic flux allows independent selection of qubit transition frequencies
- Local drive lines allow selective excitation of individual qubits

2-Qubit Circuit with Selective Control

Sideband Transitions in Circuit QED

g,2)	<u>:</u> :	le.1)
g,1)	ω_{A}^{+/2}/	e,0)
g,0)	/ω/2	

 $\omega_A/2 = (\omega_R + \omega_A)/2$

- · dispersive coupling allows joint excitations to be driven
- sideband transitions forbidden to first order: use two photon transition

Bell State Preparation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Filipp et al., Phys. Rev. Lett. 102, 200402 (2009)

DiVincenzo Criteria fulfilled for Superconducting Qubits

for Implementing a Quantum Computer in the standard (circuit approach) to quantum information processing (QIP):

#1. A scalable physical system with well-characterized qubits. \checkmark

#2. The ability to initialize the state of the qubits. \checkmark

#3. Long (relative) decoherence times, much longer than the gate-operation time. \checkmark

#4. A universal set of quantum gates. 🗸

#5. A qubit-specific measurement capability. 🗸

plus two criteria requiring the possibility to transmit information:

#6. The ability to interconvert stationary and mobile (or flying) qubits.
#7. The ability to faithfully transmit flying qubits between specified locations.