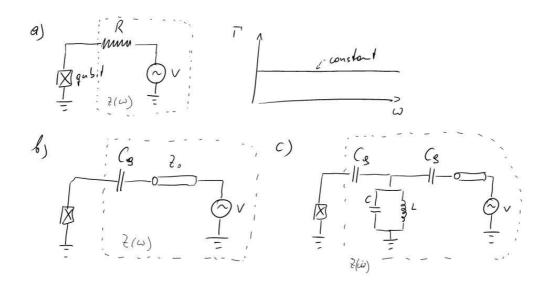
QSIT 2010 - Questions 5

3. November 2010

1. Partial Trace

A two-qubit system is in the state $|\Psi(\theta)\rangle = \cos \theta |0\rangle_A |1\rangle_B + \sin \theta |1\rangle_A |1\rangle_B$.


- (a) Calculate the reduced state for subsystem $A, \rho_A = \operatorname{tr}_B[|\Psi(\theta)\rangle\langle\Psi(\theta)|],$ via the partial trace.
- (b) For which values of θ is ρ_A a pure state? For what θ is ρ_A maximally mixed and how does this relate to the entanglement of the total state $|\Psi\rangle$?
- (c) For physical consistency, the definition of the reduced state ρ_A has to yield the correct measurement statistics for measurements on subsystem A. Show that

$$\langle \Psi | (\hat{M}_A \otimes id) | \Psi \rangle = \operatorname{Tr}[\hat{M}_A \rho_A]$$

for the measurement operator \hat{M}_A acting on system A only.

2. Energy relaxation of a qubit

In analogy to the harmonic oscillator, the energy decay time of a qubit is given by $T_1 = RC$, where C is the intrinsic capacitance of the qubit. R denotes the effective resistance $R = 1/\text{Re}[Y(\omega)]$ obtained from the impedance of the environment $Z(\omega) = 1/Y(\omega)$ as seen from the position of the qubit.

If the impedance of the environment is purely resistive, e.g. $Z(\omega) = 50 \Omega$, the decay rate $\Gamma = 1/T_1$ is frequency independent (see Figure a).

- (a) Derive the impedance of a Cooper-pair box qubit that is capacitively coupled to a transmission line ($Z_0 = 50 \ \Omega$) via a gate capacitance C_g (Figure b). Sketch the decay rate Γ as a function of frequency.
- (b) What is the spectral shape of Γ for a coupling to an *LC* oscillator (Figure c)?