Shor's Algorithm

Elisa Bäumer, Jan-Grimo Sobez, Stefan Tessarini
May 15, 2015

Integer factorization

$\triangleright n=p \cdot q$ (where p, q are prime numbers) is a cryptographic one-way function
\triangleright Classical algorithm with best asymptotic behavior: General Number Field Sieve with superpolynomial scaling: $\mathrm{O}\left(\exp \left[c(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}\right]\right)$
\triangleright Basis for commercially important cryptography

Shor's algorithm

\triangleright Factorization algorithm with polynomial complexity
\triangleright Runs only partially on quantum computer with complexity
$\mathrm{O}\left((\log n)^{2}(\log \log n)(\log \log \log n)\right)$
\triangleright Pre- and post-processing on a classical computer
\triangleright Makes use of reduction of factorization problem to order-finding problem
\triangleright Achieves polynomial time with efficiency of Quantum Fourier Transform

Talk outline

1. Classical computer part

Sketch of various subroutines
Reduction to period-finding problem
Full classical algorithm
2. Period-finding on quantum computer

Quantum Fourier Transform
Period-finding algorithm
3. Example: Factoring 21
4. Summary

Sketch of various subroutines

\triangleright greatest common divisor: e.g. Euclidean algorithm

$$
\operatorname{gcd}(a, b)= \begin{cases}b & \text { if } a \bmod b=0 \\ \operatorname{gcd}(b, a \bmod b) & \text { else }\end{cases}
$$

$$
\text { with } a>b \text {, quadratic in number of digits of } a, b \text {. }
$$ reminder: $\operatorname{gcd}(a, b)=1 \rightarrow a, b$ coprime

\triangleright Test of primality: e.g. Agrawal-Kayal-Saxena 2002, polynomial
\triangleright Prime power test: determine if $n=p^{\alpha}$, e.g. Bernstein 1997 in $\mathrm{O}(\log n)$
\triangleright continued fraction expansion: required to approximate a rational number by an integer fraction, e.g. Hardy and Wright 1979, polynomial

Reduction to period-finding problem, Miller 1976

\triangleright Find factor of odd n provided some method to calculate the order r of $x^{a} \bmod n$, $a \in \mathbb{N}$:

1. Choose a random $x<n$.
2. Find order r (somehow) in $x^{r} \equiv 1 \bmod n$.
3. Compute $p, q=\operatorname{gcd}\left(x^{\frac{r}{2}} \pm 1, n\right)$ if r even.
\triangleright Since $\left(x^{\frac{r}{2}}-1\right)\left(x^{\frac{r}{2}}+1\right)=x^{r}-1 \equiv 0 \bmod n$.
\triangleright Fails if r odd or $x^{\frac{r}{2}} \equiv-1 \bmod n$.
\triangleright Yields a factor with $p=1-2^{-k+1}$ where k is the number of distinct odd prime factors of n.

Shor's algorithm

1. Determine if n is even, prime or a prime power. If so, exit.
2. Pick a random integer $x<n$ and calculate $\operatorname{gcd}(x, n)$. If this is not 1 , then we have obtained a factor of n.
3. Quantum algorithm

Pick q as the smallest power of 2 with $n^{2} \leq q<2 n^{2}$.
Find period r of $x^{a} \bmod n$.
Measurement gives us a variable c which has the property $\frac{c}{q} \approx \frac{d}{r}$ where $d \in \mathbb{N}$.
4. Determine d, r via continued fraction expansion algorithm.
d, r only determined if $\operatorname{gcd}(d, r)=1$ (reduced fraction).
5. If r is odd, go back to 2 . If $x^{\frac{r}{2}} \equiv-1 \bmod n$ go back to 2 .

Otherwise the factors $p, q=\operatorname{gcd}\left(x^{\frac{r}{2}} \pm 1, n\right)$.

Quantum Fourier Transform (QFT)

\triangleright Define the QFT with respect to an ONB $\{|x\rangle\}=\{|0\rangle, \ldots,|q-1\rangle\}$

$$
Q F T:|x\rangle \mapsto \frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} \exp \left\{\frac{2 \pi i}{q} x \cdot y\right\}|y\rangle=\frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} \omega^{x \cdot y}|y\rangle
$$

\triangleright Apply QFT to a general state $|\psi\rangle=\sum_{x} \alpha_{x}|x\rangle$:

$$
Q F T(|\psi\rangle)=\frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} \beta_{y}|y\rangle
$$

where the β_{y} 's are the discrete Fourier transform of the amplitudes α_{x}.
\triangleright The QFT is unitary, i.e.

$$
Q F T^{\dagger} Q F T|x\rangle=|x\rangle
$$

Quantum Fourier Transform (QFT)

\triangleright Implement QFT on n qubits

\triangleright With the matrix

$$
R=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{2 \pi i / N}
\end{array}\right)
$$

Period Finding Algorithm

\triangleright Given a periodic function $f:\{0, \ldots, q-1\} \rightarrow\{0, \ldots, q-1\}$, where $q=2^{l}$, the periodicity conditions are

$$
\begin{aligned}
& f(a)=f(a+r) r \neq 0 \\
& f(a) \neq f(a+s) \forall s<r .
\end{aligned}
$$

Δ Initialize the q.c. with the state $\left|\Phi_{I}\right\rangle=|0\rangle^{\otimes 2 l}$
\triangleright Then apply Hadamard gates on the first I qubits and the identity to the others:

$$
\left|\Phi_{0}\right\rangle=H^{\otimes l} \otimes \mathbb{1}^{\otimes l}|0\rangle^{\otimes 2 l}=\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right)^{\otimes l} \otimes|0\rangle^{\otimes l}=\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle|0\rangle^{\otimes l}
$$

\triangleright Apply the unitary that implements the function f (here it is $f=x^{a} \bmod n$)

$$
\left|\Phi_{1}\right\rangle=U_{f}\left|\Phi_{0}\right\rangle=\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle|f(a)\rangle
$$

Period Finding Algorithm

\triangleright Imagine one performs a measurement on $f(a)$, then the post measurement state of the first I qubits is

$$
\left|\Phi_{1}\right\rangle_{z}=\sqrt{\frac{r}{q}} \sum_{a: f(a)=z}|a\rangle .
$$

\triangleright Remember that f is periodic and choose $a_{0}=\min \{a \mid f(a)=z\}$. Now one can rewrite

$$
\left|\Phi_{1}\right\rangle_{z}=\sqrt{\frac{r}{q}} \sum_{t=0}^{q / r-1}\left|a_{0}+t \cdot r\right\rangle
$$

when assuming that $r \mid q$ (i.e. r divides q).

Period Finding Algorithm

\triangleright Perform the QFT

$$
\begin{aligned}
|\tilde{\Phi}\rangle_{z} & =Q F T^{-1}\left(\left|\Phi_{1}\right\rangle_{z}\right)=\sqrt{\frac{r}{q}} \sum_{t=0}^{q / r-1} \frac{1}{\sqrt{q}} \sum_{c=0}^{q-1} \exp \left\{\frac{-2 \pi i}{q}\left(a_{0}+r t\right) c\right\}|c\rangle \\
& =\sqrt{\frac{r}{q^{2}}} \sum_{c=0}^{q-1} \exp \left\{-\frac{2 \pi i}{q} a_{0} c\right\} \underbrace{\sum_{t=0}^{q / r-1} \exp \left\{-\frac{2 \pi i}{q} t r c\right\}}_{\alpha_{c}}|c\rangle .
\end{aligned}
$$

\triangleright Remark: if $r c=k q$ for some $k \in \mathbb{N}$ then

$$
\alpha_{c}=\frac{q}{r} .
$$

\triangleright The probability for measuring a specific $c^{\prime}=k q / r$:

$$
P\left[c^{\prime}\right]=\left|\left\langle c^{\prime} \mid \tilde{\Phi}\right\rangle\right|^{2}=\frac{r}{q^{2}}\left|\alpha_{c^{\prime}}\right|^{2}=\frac{r}{q^{2}} \frac{q^{2}}{r^{2}}=\frac{1}{r}
$$

Period Finding Algorithm

\triangleright Overall probability to measure a c of the form $\frac{k q}{r}$ is then

$$
\sum_{c=k q / r}\left|\left\langle c^{\prime} \mid \tilde{\Phi}\right\rangle\right|^{2}=r \frac{1}{r}=1
$$

\triangleright The algorithm output is a natural number that is of the form $\frac{k q}{r}$, with $k \in \mathbb{N}$.

Example: Factoring n=21

1. Choose x
2. Determine q
3. Initialize first register $\left(r_{1}\right)$
4. Initialize second register $\left(r_{2}\right)$
5. QFT on first register
6. Measurement
7. Continued Fraction Expansion \rightarrow determine r
8. Check $r \rightarrow$ determine factors
9. Choose a random integer $\mathrm{x}, 1<x<n$
\triangleright if it is not coprime with n , e.g. $x=6$:
$\rightarrow \operatorname{gcd}(x, n)=\operatorname{gcd}(6,21)=3 \rightarrow 21 / 3=7 \rightarrow$ done!
\triangleright if it is coprime with n , e.g. $x=11$:
$\rightarrow \operatorname{gcd}(11,21)=1 \rightarrow$ continue!

2. Determine q

$$
\begin{aligned}
& \triangleright n^{2}=244 \stackrel{!}{\leq} q=2^{l}<2 n^{2}=882 \\
& \quad \rightarrow q=512=2^{9}
\end{aligned}
$$

\triangleright Initial state consisting of two registers of length I:

$$
\left|\Phi_{i}\right\rangle=|0\rangle_{r_{1}}|0\rangle_{r_{2}}=|0\rangle^{\otimes 2^{l}}
$$

3. Initialize r_{1}

\triangleright initialize first register with superposition of all states $a(\bmod q)$:

$$
\left|\Phi_{0}\right\rangle=\frac{1}{\sqrt{512}} \sum_{a=0}^{511}|a\rangle|0\rangle
$$

\triangleright this corresponds to $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ on all bits

4. Initialize r_{2}

\triangleright initialize second register with superposition of all states $x^{a}(\bmod n)$:

$$
\begin{aligned}
& \left|\Phi_{1}\right\rangle=\frac{1}{\sqrt{512}} \sum_{a=0}^{511}|a\rangle\left|11^{a}(\bmod 21)\right\rangle \\
& =\frac{1}{\sqrt{512}}(|0\rangle|1\rangle+|1\rangle|11\rangle+|2\rangle|16\rangle+|3\rangle|8\rangle+\ldots)
\end{aligned}
$$

$\triangleright r=6$, but not yet observable

5. Quantum Fourier Transform

\triangleright apply the QFT on the first register:

$$
|\tilde{\Phi}\rangle=\frac{1}{512} \sum_{a=0}^{511} \sum_{c=0}^{511} e^{2 \pi i a c / 512}|c\rangle\left|11^{a}(\bmod 21)\right\rangle
$$

6. Measurement!

\triangleright probability for state $\left|c, x^{k}(\bmod n)\right\rangle$, e.g. $k=2 \rightarrow|c, 16\rangle$ to occur:

$$
p(c)=\left|\frac{1}{512} \sum_{a: 11^{a}}^{511} e_{\bmod 21=16}^{2 \pi i a c / 512}\right|^{2}=\left|\frac{1}{512} \sum_{b} e^{2 \pi i(6 b+2) c / 512}\right|^{2}
$$

\triangleright peaks for $c=\frac{512}{6} \cdot d, d \in \mathbb{Z}$:

7. Determine the period r

\triangleright Assume we get 427: $\left|\frac{c}{q}-\frac{d}{r}\right|=\left|\frac{427}{512}-\frac{d}{r}\right| \stackrel{!}{\leq} \frac{1}{1024}$
\triangleright Continued fraction expansion:

$$
\begin{array}{cccc}
\frac{c}{q}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}}, & d_{0}=a_{0}, & d_{1}=1+a_{0} a_{1}, & d_{n}=a_{n} d_{n-1}+d_{n-2} \\
& r_{0}=1, \quad r_{1}=a_{1}, & r_{n}=a_{n} r_{n-1}+r_{n-2} \\
\frac{427}{512}=0+\frac{1}{1+\frac{1}{5+\frac{1}{42+\frac{1}{2}}},} & d_{0}=0, \quad d_{1}=1, \quad d_{2}=5, \quad d_{3}=427 \\
& r_{0}=1, \quad r_{1}=1, \quad r_{2}=6, \quad r_{3}=512
\end{array}
$$

\triangleright as $\frac{d_{0}}{r_{0}}=0$ and $\frac{d_{1}}{r_{1}}=1$ obviously don't work, try $\frac{d_{2}}{r_{2}}=\frac{5}{6} \rightarrow r=6$
\rightarrow it works! $=$)
\triangleright for $\frac{c}{q}=\frac{171}{512}$ we would get $\frac{d}{r}=\frac{1}{3}$, so using $r=3$ this would not work.
\rightarrow it only works if d and r are coprime!
\rightarrow if it doesn't work, try again!

8. Check r

\triangleright check if r is even
\triangleright check if $x^{r / 2} \bmod n \neq-1 \quad \checkmark$
\triangleright as both holds, we can determine the factors:

$$
\begin{aligned}
& x^{r / 2} \quad \bmod n-1=11^{3} \quad \bmod 21-1=7 \\
& x^{r / 2} \quad \bmod n+1=11^{3} \quad \bmod 21+1=9
\end{aligned}
$$

\rightarrow the two factors are $\quad \operatorname{gcd}(7,21)=7$ and $\operatorname{gcd}(9,21)=3$

Conclusion

\triangleright Shor's algorithm is very important for cryptography, as it can factor large numbers much faster than classical algorithms (polynomial instead of exponential)
\triangleright powerful motivator for quantum computers
\triangleright no practical use yet, as it is not possible yet to design quantum computers that are large enough to factor big numbers

References

\triangleright Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer." SIAM journal on computing 26.5 (1997): 1484-1509.
\triangleright Agrawal, Manindra, Neeraj Kayal, and Nitin Saxena. "PRIMES is in P." Annals of mathematics (2004): 781-793.
\triangleright Bernstein, Daniel. "Detecting perfect powers in essentially linear time." Mathematics of Computation of the American Mathematical Society 67.223 (1998): 1253-1283.
\triangleright Hardy, Godfrey Harold, et al. An introduction to the theory of numbers. Vol. 4. Oxford: Clarendon press, 1979.
\triangleright Miller, Gary L. "Riemann's hypothesis and tests for primality." Journal of computer and system sciences 13.3 (1976): 300-317.

