Quantum Teleportation with Photons

Nicolas Brehm, Katrin Kröger, Natascha Hedrich

ETH Zürich

08.05.2015
The distribution of single qubits over large distance via quantum teleportation is a key ingredient for realization of a quantum network.
Motivation

- The distribution of single qubits over large distance via quantum teleportation is a key ingredient for realization of a quantum network.
- Quantum teleportation is a secure way to send information.
Overview

1. The quantum teleportation protocol

2. Experimental realization
 - Setup
 - Results
 - Summary

3. Long Distance Teleportation
 - Setup
 - Feed-Forward
 - Noise Reduction
 - Results

4. Summary

5. References
The quantum teleportation protocol

1. Alice prepares or receives a quantum bit

\[\Rightarrow |\psi\rangle_1 = \alpha |0\rangle_1 + \beta |1\rangle_1, \quad \text{where:} \quad |\alpha|^2 + |\beta|^2 = 1 \]
The quantum teleportation protocol

2. A pair of entangled qubits is created and sent to Alice and Bob

\[|\psi^-\rangle_{23} = \frac{1}{\sqrt{2}} (|01\rangle_{23} - |10\rangle_{23}) \]
2. A pair of entangled qubits is created and sent to Alice and Bob

\[\Psi^{-}_{23} = \frac{1}{\sqrt{2}} (|01\rangle_{23} - |10\rangle_{23}) \]

3. Rewrite the state of the three qubits:

\[|\psi\rangle_{123} = (\alpha |0\rangle_1 + \beta |1\rangle_1) \otimes \frac{1}{\sqrt{2}} (|01\rangle_{23} - |10\rangle_{23}) \]

\[= \frac{1}{4} \sum_k (|\psi_k\rangle_{12} \otimes U_k |\psi\rangle_3), \]

where \(|\psi\rangle_3 = \alpha |0\rangle_3 + \beta |1\rangle_3 \), \(U_k \) is a unitary Matrix, and the \(|\Psi_k\rangle_{12} \) are Bell states
4. Alice performs a Bell state measurement on qubit 1 and 2:
4. Alice performs a Bell state measurement on qubit 1 and 2:
 \(\Rightarrow \) Bob’s state is projected onto \(U_k |\psi\rangle_3 \)
4. Alice performs a Bell state measurement on qubit 1 and 2:
 \[\Rightarrow \text{Bob's state is projected onto } U_k |\psi\rangle_3 \]

5. Alice sends the outcome of her measurement to Bob via classical communication channel
4. Alice performs a Bell state measurement on qubit 1 and 2:
 \[\Rightarrow \text{Bob’s state is projected onto } U_k |\psi\rangle_3 \]

5. Alice sends the outcome of her measurement to Bob via classical communication channel

6. Four possible outcomes:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Resulting state</th>
<th>Bob’s Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\psi^-\rangle_{12}$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\Phi^-\rangle_{12}$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\Phi^+\rangle_{12}$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\psi^+\rangle_{12}$</td>
<td>$</td>
</tr>
</tbody>
</table>
7. Bob performs the appropriate unitary operation on his qubit
7. Bob performs the appropriate unitary operation on his qubit
8. Bob is now in possession of the qubit Alice wanted to send!!

Note: Alice’s qubit is destroyed in the measuring process!
Experiment

Setup

Crucial steps:

1. Creation of entanglement
2. Realization of Bell-Measurement
3. Analysis of teleported state
1. Creation of entanglement

- Entangled photon pair $|\Psi^-\rangle_{23}$ created via type II-Parametric Down Conversion
- Laser pulse is reflected at mirror and creates $|\Psi^-\rangle_{14}$
2. Realization of Bell-Measurement
 - Photon 1 and 2 superimposed at BS with detectors f1 and f2
 - Coincidence click projects photons 1 and 2 into $|\psi^-\rangle_{12}$
 - Difference in arrival time ≤ 520 fs \equiv arrive „simultaneously“
3. Analysis of teleported state
 - Bob knows via CCC if photon 3 is in desired state
 - Polarization is analysed with PBS with detectors d1 and d2
Experiment

Theoretical prediction

Preparation in $+45^\circ$-polarization

<table>
<thead>
<tr>
<th>TP-region</th>
<th>Coincidence</th>
<th>d1</th>
<th>d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Inside</td>
<td>25%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Successful teleportation:
 3-fold coincidence d2-f1-f2 with absence of 3-fold coincidence d1-f1-f2
Results

Measured three-fold coincidences

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>+45°</td>
<td>0.63 ± 0.02</td>
</tr>
<tr>
<td>−45°</td>
<td>0.64 ± 0.02</td>
</tr>
<tr>
<td>0°</td>
<td>0.66 ± 0.02</td>
</tr>
<tr>
<td>90°</td>
<td>0.61 ± 0.02</td>
</tr>
<tr>
<td>Circular</td>
<td>0.57 ± 0.02</td>
</tr>
</tbody>
</table>
Results
Measured four-fold coincidences

- Visibilities of the dip in the orthogonal polarization are (70 ± 3)%
Summary

- Teleportation of a single photon achieved at fidelity of 70%.
- Next steps:
 - Show teleportation in other systems.
 - Conduct experiments on the fundamental nature of quantum mechanics.
 - Provide links between quantum computers.
 - Increase teleportation distance.
Physical setup on La Palma (Alice) and Tenerife (Bob)
Setup

- Creation of photons.
- Photon 1 heralded by click at (t)
Alice’s Bell state measurement.

\(|\Psi^-
angle_{12} \rightarrow \) clicks at \(t-a-d \) or \(t-b-c \), \(|\Psi^+\rangle_{12} \rightarrow \) clicks at \(t-a-b \) or \(t-c-d \)
Bob’s measurement setup

Classical and quantum channels are separated via dichoric mirror
Alice’s BSM distinguishes 2 Bell states ($|\psi^+\rangle$ and $|\psi^-\rangle$)
Alice’s BSM distinguishes 2 Bell states ($|\psi^+\rangle$ and $|\psi^-\rangle$)

1. $|\psi^-\rangle \rightarrow$ Bob does nothing (no feed-forward)
Alice’s BSM distinguishes 2 Bell states ($|\Psi^+\rangle$ and $|\Psi^-\rangle$)

1. $|\Psi^-\rangle \rightarrow$ Bob does nothing (no feed-forward)
2. $|\Psi^+\rangle \rightarrow$ Bob applies a π pulse (feed-forward)
Feed-Forward

Alice’s BSM distinguishes 2 Bell states ($|\Psi^+\rangle$ and $|\Psi^-\rangle$)

1. $|\Psi^-\rangle \rightarrow$ Bob does nothing (no feed-forward)
2. $|\Psi^+\rangle \rightarrow$ Bob applies a π pulse (feed-forward)
Problem: Fluctuations in atmosphere (rain, snow, temperature, etc.) ⇒ very low signal-to-noise ratio
Problem: Fluctuations in atmosphere (rain, snow, temperature, etc.) \Rightarrow very low signal-to-noise ratio

Solutions:
- High creation rates of entangled photon pairs
Noise Reduction

Problem: Fluctuations in atmosphere (rain, snow, temperature, etc.) ⇒ very low signal-to-noise ratio

Solutions:
- High creation rates of entangled photon pairs
- Ultra-low dark count detectors with large active area
Problem: Fluctuations in atmosphere (rain, snow, temperature, etc.) ⇒ very low signal-to-noise ratio

Solutions:

- High creation rates of entangled photon pairs
- Ultra-low dark count detectors with large active area
- Small coincidence windows
Problem: Fluctuations in atmosphere (rain, snow, temperature, etc.) \(\Rightarrow\) very low signal-to-noise ratio

Solutions:

- High creation rates of entangled photon pairs
- Ultra-low dark count detectors with large active area
- Small coincidence windows
- Closed-loop tracking system
Results

Density Matrix Representation

- To test the teleportation, a known state is polarization is created (photon 1) and measured by Bob.
- Results shown using density matrix representations.
Results
Density Matrix Representation

Input state: $|\psi\rangle = |H\rangle$
Results

Density Matrix Representation

Input state: $|\psi\rangle = |V\rangle$
Results

Density Matrix Representation

Input state: $|\psi\rangle = |P\rangle = \frac{|H\rangle + |V\rangle}{\sqrt{2}}$
Input state: $|\psi\rangle = |L\rangle = \frac{|H\rangle - i|V\rangle}{\sqrt{2}}$
Fidelities ($\langle \psi_{\text{ideal}} | \rho_{\text{meas}} | \psi_{\text{ideal}} \rangle$) are always above classical limit [3]! (feed-forward results shown in red)
Fidelities \(\langle \psi_{\text{ideal}} | \rho_{\text{meas}} | \psi_{\text{ideal}} \rangle \) are always above classical limit [3]! (feed-forward results shown in red)

Note: results for \(|H\rangle\) and \(|V\rangle\) with or without feed-forward differ only by global phase
Summary

- We have discussed the teleportation protocol and its original implementation.
We have discussed the teleportation protocol and its original implementation.

We have seen how it can be used to teleport information over 143 km.
We have discussed the teleportation protocol and its original implementation.
We have seen how it can be used to teleport information over 143 km.
First steps to world wide quantum key distribution → quantum network.
