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Basics and Definitions (1)

Definition '
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Rx(0) = e /2X — cos (§/2) - | — isin(0/2) - X
Ry(#) = e "/2Y = cos(0/2) - I —isin(0/2)- Y
Rz(0) = e%/2% = cos (/2) - | — isin(0/2) - Z

RA(G) _ e—i9/2-f7-c‘f
=cos(6/2)-1—isin(8/2)- (nxX +nyY +nzZ)

XYX =-Y  XRy(6)X = Ry(-0)
XZX =-Z  XRz(0)X = Rz(—0)




X-Y decomposition of a single gbit gate

Theorem

X-Y decomposition of a single gbit gate
vU € C?*2 unitary 3o, B, € R:

U = e“Rz(3)Ry(v)Rz(9)

also true for any two non-parallel rotation axis
Ri(0), Rwm(0) 1)y m
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Theorem

X-Y decomposition of a single gbit gate
vU € C?*2 unitary 3o, B, € R:

U = e“Rz(3)Ry(v)Rz(9)

Proof.
U can be written as

U=
el(a=8/2-3/2) cog(~/2)  el(e=B/2+3/2) sin(~/2)
< gl(et8/2=0/2) sin(v/2)  /(2+8/2+3/2) cos(y/2) ) -

also true for any two non-parallel rotation axis
Ri(0), Rwm(0) 1)y m




Corrollary of decomposition S iehss
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Corollary

VYU e C2*2 unitary 3a € R3A, B, C € C>**2unitary:
ABC = I, U = e “AXBXC

Proof.
A= Rz(B)Ry(7/2), B= Ry(—7/2)R;z ( ‘”ﬁ)

o-n ()

XBX = XRy(—~/2)XXR; (—“Tﬂ) X =
Ryv(1/2)Rz (2£2) =
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0010
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U vV , Where V2 = U

T-
Tt TT
I-H ,

|

1 0
where S= T2, T = ( 0 ein/4

Expansion to more control Qbits is tedious, but not
difficult.
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Theorem

Two level gates are universal.

YU € C3<3 unitary 3U; € C3 . Uy = Ul @ 1, U] € C?*2
unitary U = Ul Uj U}

Proof.
a b C Gates
U= d e f |,
g h j
a* b* 0
\/|a|’;‘)+\b\2 VlaP+|b?
b+#0: U= =
7 1 VIaB+1b?  /lalP+ [P
0 0 1
a v c
UiU = 0 ‘e f L]
g/ h/ j/
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Proof.
contd.
a/* 0 C/*
VigP+le? VigP+le?
c#£0U, = 0 1 0

c 0 —-a
Via P+ & [P+|c'|?

1 bl/ C/l
UU U = ( o e f ) but U>U; U are unitary

O h// j//
1 0 O
= d// — g// — O U3 — ( O el/* f//* )
0 hl/* j//*

= UslbUiU =1 = U= UlUIU]

for higher dimensions similar processes
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UeC¥ = U=T (Uo1g-p), U € CP2 N < 9T
JUeCI* . N> (d—-1)
2xi
ex: Uy = e , where pj is the j prime number.
With one single gbit gate and CNOTs an arbitrary

two-level unitary operation on a state of n gbits can be
implemented, where the CNOTs are used to shuffle.




Therefore CNOTs and unitary single Qbit operations form
an universal set of quantum computing.

Unfortunately, for most single Qbit operations exists no
straightforward method of error correction.
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Approximation of Unitaries

Definition
error E(U, V) := ngxll(U— V) ) ||

E(UmUn—1-.. Uy, VmVin_1 ... V4) < S E(UL, V)

Proof.

E(U2Uy, Vo Vi) = [[(U2Uy — Vo Vi) [9) ||

= [[(U2Uy = VoUy) [¢) + (VaUr — Vo Vi) [¥) ||

< |[(U2Uy = VoUn) [) || + [[(VaUr = Vo Vi) [4) ||
< E(UQ, V2) + E(U1, V1)

further by induction
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Standard Set of universal Gates

Hadamard H, phase S, CNOT, /8 = T, where /8

could be replaced by Toffoli.
T = Rz(n/4), HTH = Rx(w/4) up to a global phase.

exp(—in/8-Z)exp (—im/8 - X)
T . . T ™ . . T
= (cos —[—isin —Z) (cosgl — isin §X>

8 8
—cos2 Xy T in~ in ~
=CO0S 8I /(0058(X+Z)+sm8Y>sm8
:Rﬁ(e)v

where i1 = (cos §,sin %, cos §) and cos § = cos? %.
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Multiples of irrational Angles

2T \[+2
cos § = cos? T = = £ ¢Q,

therefore any R;(« ) can be arbitrary close approximated.

HR;(a)H = Rp(c), where i = (cos §, —sin§,cos ).
VYU e C?*2 unitary 3o, 8,0 € R:

U = e"“Ryu(B)Ram(7)Ra(9)

Finally, YU € C?*2 unitary, Ve > 03ny,n,n3 € N :

E (U, Ry(6)™ HRy(8) HR(0)") < e.
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Universality of Generic gbit Gates

Definition

A “generic” gbit gate is a U € C2"*2" with eigenvalues
6161 ’ 6’92, elezn: Vj, k% ¢ Q% §é @

¥n € NU" has eigenvalues e g2 ginfen

each n defines therefore a point on a 2%-torus.

If U=e"VvAeRVedn: E (U",e™M) <e.

By switching leads we can get another “generic” gbit gate
U=PUP', where might be P = SWAP.

It can easily been shown, that {4} have a closed Lie
Algebra.

U =eB, B=PAPT,

by explicit computation can be shown, that the complete
Lie-Algebra of U(4) can be computed by successives
commutation, starting by A and B.
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Efficiency of Approximation

Theorem

Solovay-Kitaev theorem:

Any quantum circuit containing m CNOT s and single qgbit
gates can be approximatet to an accuracy € using only

O (mlog®(m/e)) gates from a discrete set, where

c=Ilims;_,2+9.
6>0

On one hand YU € C2"*2": O (n?4"log®(n?4" /<))
operations are sufficient, on the other hand

JU € €?2"2" . Q (2"log(1/¢)/ log(n)) operations are
required for implementinga V : E(U, V) <e.
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Summary

» CNOTs and unitary single Qbit operations form an
universal set for quantum computing.

» Unitary single Qbit operations can be approximated
to an arbitrary precision by a finite set of gates.

» This approximation cannot always be done efficiently.
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