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Basics and Definitions (I)

Definition
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
1 =

(
1 0
0 1

)
H = 1√

2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
T =

(
1 0
0 eiπ/4

)
H = (X + Z )/

√
2 S = T 2
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Basics and Definitions (II)

RX (θ) = e−iθ/2·X = cos (θ/2) · I − i sin (θ/2) · X
RY (θ) = e−iθ/2·Y = cos (θ/2) · I − i sin (θ/2) · Y
RZ (θ) = e−iθ/2·Z = cos (θ/2) · I − i sin (θ/2) · Z

Rn̂(θ) = e−iθ/2·n̂·~σ

= cos (θ/2) · I − i sin (θ/2) · (nX X + nY Y + nZ Z )

XYX = −Y XRY (θ)X = RY (−θ)
XZX = −Z XRZ (θ)X = RZ (−θ)
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X-Y decomposition of a single qbit gate

Theorem
X-Y decomposition of a single qbit gate
∀U ∈ C2×2 unitary ∃α, β γ, δ ∈ R:
U = eiαRZ (β)RY (γ)RZ (δ)

Proof.
U can be written as
U =(

ei(α−β/2−δ/2) cos(γ/2) ei(α−β/2+δ/2) sin(γ/2)

ei(α+β/2−δ/2) sin(γ/2) ei(α+β/2+δ/2) cos(γ/2)

)
also true for any two non-parallel rotation axis
Rn̂(θ),Rm̂(θ) n̂ 6‖ m̂
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Corrollary of decomposition

Corollary
∀U ∈ C2×2 unitary ∃α ∈ R∃A,B,C ∈ C2×2unitary:
ABC = I,U = eiαAXBXC

Proof.
A = RZ (β)RY (γ/2), B = RY (−γ/2)RZ

(
− δ+β

2

)
,

C = RZ

(
δ−β

2

)
,

XBX = XRY (−γ/2)XXRZ

(
− δ+β

2

)
X =

RY (γ/2)RZ

(
δ+β

2

)
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Operations controled by one Qbit

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

Cphase =


1 0 0 0
0 1 0 0
0 0 eiα 0
0 0 0 eiα

 = =

controled U =

(
1 0
0 U

)
= =
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Operations controled by several Qbits

= , where V 2 = U

= ,

where S = T 2, T =

(
1 0
0 eiπ/4

)
.

Expansion to more control Qbits is tedious, but not
difficult.
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Universality of Two Level Gates

Theorem
Two level gates are universal.
∀U ∈ C3×3 unitary ∃Ui ∈ C3×3 : Ui = U ′

i ⊗ 1,U ′
i ∈ C2×2

unitary U = U†
1U†

2U†
3

Proof.

U =

 a b c
d e f
g h j

,

b 6= 0: U1 =


a∗√

|a|2+|b|2
b∗√

|a|2+|b|2
0

b√
|a|2+|b|2

−a√
|a|2+|b|2

0

0 0 1


U1U =

 a′ b′ c′

0 ′e f ′

g′ h′ j ′
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Proof contd.

Proof.
contd.

c′ 6= 0 U2 =


a′∗√

|a′|2+|c′|2
0 c′∗√

|a′|2+|c′|2

0 1 0
c′√

|a′|2+|c′|2
0 −a′√

|a′|2+|c′|2


U2U1U =

 1 b′′ c′′

0 e′′ f ′′

0 h′′ j ′′

, but U2U1U are unitary

⇒ d ′′ = g′′ = 0 U3 =

 1 0 0
0 e′′∗ f ′′∗

0 h′′∗ j ′′∗


⇒ U3U2U1U = I ⇒ U = U†

1U†
2U†

3

for higher dimensions similar processes
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Unitaries of Higher Dimensions

U ∈ Cd×d ⇒ U =
∏N

j=1(U
′
j ⊗1d−2),U ′

j ∈ C2×2,N ≤ d(d−1)
2

∃U ∈ Cd×d : N ≥ (d − 1)

ex: Ujk = δjke
2πi
pi , where pj is the j th prime number.

With one single qbit gate and CNOTs an arbitrary
two-level unitary operation on a state of n qbits can be
implemented, where the CNOTs are used to shuffle.
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Therefore CNOTs and unitary single Qbit operations form
an universal set of quantum computing.
Unfortunately, for most single Qbit operations exists no
straightforward method of error correction.
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Approximation of Unitaries

Definition

error E(U,V ) := max
|ψ〉

||(U − V ) |ψ〉 ||

E(UmUm−1 . . .U1,VmVm−1 . . .V1) ≤
∑m

j=1 E(Uj ,Vj)

Proof.
E(U2U1,V2V1) = ||(U2U1 − V2V1) |ψ〉 ||
= ||(U2U1 − V2U1) |ψ〉+ (V2U1 − V2V1) |ψ〉 ||
≤ ||(U2U1 − V2U1) |ψ〉 ||+ ||(V2U1 − V2V1) |ψ〉 ||
≤ E(U2,V2) + E(U1,V1)
further by induction
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Standard Set of universal Gates

Hadamard H, phase S, CNOT , π/8 = T , where π/8
could be replaced by Toffoli.
T = RZ (π/4), HTH = RX (π/4) up to a global phase.

exp (−iπ/8 · Z ) exp (−iπ/8 · X )

=
(

cos
π

8
I − i sin

π

8
Z

) (
cos

π

8
I − i sin

π

8
X

)
= cos2 π

8
I − i

(
cos

π

8
(X + Z ) + sin

π

8
Y

)
sin

π

8
=Rn̂(θ),

where n̂ =
(
cos π

8 , sin π
8 , cos π

8

)
and cos θ

2 = cos2 π
8 .



Universality of
Quantum Gates

Markus
Schmassmann

Basics and
Definitions

Universality of
CNOT and Single
Qbit Unitaries
Decompositon of Single
Qbit Operation

Controled Operations

Universality of Two Level
Gates

A Discrete Set of
Universal
Operations

Summary

Literature

Multiples of irrational Angles

cos θ
2 = cos2 π

8 =
√

2+2
4 ⇒ θ

2π /∈ Q,
therefore any Rn̂(α) can be arbitrary close approximated.
HRn̂(α)H = Rm̂(α), where m̂ =

(
cos π

8 ,− sin π
8 , cos π

8

)
.

∀U ∈ C2×2 unitary ∃α, β γ, δ ∈ R:
U = eiαRn̂(β)Rm̂(γ)Rn̂(δ)
Finally, ∀U ∈ C2×2 unitary, ∀ε > 0∃n1,n2,n3 ∈ N :
E (U,Rn̂(θ)

n1HRn̂(θ)
n2HRn̂(θ)

n3) < ε.
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Universality of Generic qbit Gates

Definition
A “generic” qbit gate is a U ∈ C2n×2n

with eigenvalues
eiθ1 ,eiθ2 ,eiθ2n : ∀j , k θj

π /∈ Q θj
θk
/∈ Q.

∀n ∈ NUn has eigenvalues einθ1 ,einθ2 ,einθ2n ,
each n defines therefore a point on a 2k -torus.
If U = eiA ∀λ ∈ R∀ε∃n : E

(
Un,eiλA)

< ε.
By switching leads we can get another “generic” qbit gate
U=PUP ′, where might be P = SWAP.
It can easily been shown, that

{
eiλA}

have a closed Lie
Algebra.
U ′ = eiB, B = PAP−1;
by explicit computation can be shown, that the complete
Lie-Algebra of U(4) can be computed by successives
commutation, starting by A and B.
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Efficiency of Approximation

Theorem
Solovay-Kitaev theorem:
Any quantum circuit containing m CNOTs and single qbit
gates can be approximatet to an accuracy ε using only
O

(
m logc(m/ε)

)
gates from a discrete set, where

c = limδ→0
δ>0

2 + δ.

On one hand ∀U ∈ C2n×2n
: O

(
n24n logc(n24n/ε)

)
operations are sufficient, on the other hand
∃U ∈ C2n×2n

: Ω (2n log(1/ε)/ log(n)) operations are
required for implementing a V : E(U,V ) ≤ ε.
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Summary

I CNOTs and unitary single Qbit operations form an
universal set for quantum computing.

I Unitary single Qbit operations can be approximated
to an arbitrary precision by a finite set of gates.

I This approximation cannot always be done efficiently.
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I Michael A. Nielsen, Isaac L. Chuang:
Quantum Computation and Quantum Information,
Chapter 4: Quantum circuits

I John Preskill: Lecture Notes for
Quantum Information and Computation,
Chapter 6.2.3: Universal quantum gates
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