DY namics of 4 Ruantum System:

@M postulate: The time evolution of a state |y> of a closed quantum system is described
by the Schrddinger equation

'ﬁ TR VAL BR (L)

where H Ls the hermitian operator kinown as the Hamiltonlan describing the closed system.

a closed quantum system does not Linteract with any other system

T e

general solution: (¥ (t) > Toexp {_

the Hamliltontan.

H (s hermitian and has a spectral decomposition H=2 €1E7CE]
with elgenvalues € =

and elgenvectors |€>

smallest value of € is the ground state energy with

the elgenstate | >
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example:
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this s a rotatlon around the equator with Larmor
X 4 precession frequency
9
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Rotation operators:
whew exponentiated the Paull matrices give rise to rotation matrices around the three

orthogonal axis in z-dimensional space.
e G
Cas ? i | S(M Z )

h;bX/q.? (s ©T - i5im 2 X =
= “ ~t 5 £ cos 2

QK(G)“ é
oyl | s
(RV((;)’& f =Cos§_1-xsmfj>/ = ;i” S’;/
"92/2 Qh(e/z‘
(R @> rCosQ_L - [SCIL,?% = ( }9/

If the Paull weatvices X, Y or Z are present in the
Hamiltonian of a system they will give rise to rotations
of the qubit state vector around the respective axis.

W2
onvinee 4ﬂwgﬁt that the operators Ry, do perform rotations on the qubit state

exerclise:
written tn tV‘e Bloch sphere vepresentation.
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control of Single Rubit States

b Y resonant Lrvadiation:

o)
X, tos(ot)

qubi’c Hawmlltonlan with ac-drive:

H- {7\[’(% 2 + \2?( Cos (&) ;(\ + jzg Cim (ot ;\/j

1
ac-fields applied along

the x and Y components
=1
Y/ﬂx Coslwt)

of the qubit state
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Rotating wave Approximation (RWA)

unitary transform:

([ 2e E
. -~ 2
C\)('H’( U_ =~ o
( - 2 (LE
result: Hcﬁ[ﬂzﬁi +%‘)2(l+e_( )
25 ¢ 2 (wt
=2y (1 )j
L4
drop fast votating terms (RWA):  H o =

with detuning:

Ag wq_.'(«.')

l.e. lrvadiating the qubit with an ac-fleld with controlled amplitude and phase allows to
realize arbitrary single qubtt rotations.
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prepavation of qubit states:  initial state |0>:

“Oq prepare excited state by rotating avound X or Y axis:

Xﬂ: PMLS& ﬂx t = e

C o> ~Pl— (1

—

a ]

Y pulse: Ryt = (o) 1)

prepavation of a superposition state:

18+
X2 pulse: It - % 1) — g — =
Y2 pulse: 25 t = ’g_ (55 ___@W (oﬁ;:(o
2

in fact such a pulse of chosen length and phase can prepare any single qubit state, L.e. any
point on the Bloch sphere can be veached
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uUantum Measurement

One way to determine the state of a qubit is to measure the projection of its state vector along
2 glven axis, say the z-axis.

Ow the Bloch sphere this corvesponds to the following operation:

After a project’u\/e measurement is completed the qubit will be
in elther one of its computational basis states.

(n Q repeated measurement the projected state will be measured
with certa/wuc@.
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QM postulate: quantum measurement Ls descertbed by a set of operators {My} acting on
the state space of the system. The probability p of a measurement result m occurring
whew the state y Ls measured is

Plan) = (¢l 4\1,: M, %5
the state of the system after the measurement is
M, 1Y)
\ p+)

compLetEV\,ess: the sumt over all measurement outcomes has to be umitzd

+
| = % {J(/\M) - ZM’:—A <“f/lMM’ MMO(LP>

[¢') =

example: projective measurement of a qubit in state y in its computational basis

\Y ) = o (0) 4 {é(()

QSIT07.2 Page 8




M) = 1ot = (1) ¢ He= e -[27)
mensurement probabilities:

o) = (YIS 14D = ou Colo) = [xi

e = CHINIM LYY - g¥g iy = (g1°

state after measurement:

]
|

lk{o‘w> x 10) DX S
J ooy L1 <

w = E “7 = ’og\ ll>
,S e(l) \’—(—@_\'ﬂ ]Dkk

menasuring the state again after o first mensurement ylelds the same state as the initial
measurement with unit probability
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bnformation content tn a sinale gulbit:

- lnfinite mumber of qubit states

2
- but single measurement veveals only 0 or 1 with probabilities [alor (@3] 2

- measurement will collapse state vector on basis state
- to determine Xand (3 an infinite number of measurements has to be made

But, if not menasured qubit contains hidden' information about K Q) ,
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A Few Physieal Realizations of Qubits
energy scales:
nuclear spins in molecules: | GHa = So -k
[ GH z = 4 pe V

nuclear magnetic moment in external magnetic field

X ! [ ag=qp,B
T
T ('{ P © 456 HH 2
ar 2—-0 WK
~ A Q_V
solution of large A #
number of molecules -
with nuclear spin ’\5 ~ (0
distinct energies of -
different nuclel
S— i M — — i ._I e — ——e ..—-M._._i.___I.J\__...
469.98 470.00 470.02 [MHz]
flgures from MIT group (www.mit.edu/~ichuang/) > &
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chatwn of Lons tn an Lon trap:
row of qubits in a
linear Paul trap forms
a quantum register
® optical transition frequencies
(forbidden transitions,
intercombination lines)
- 70 um - S — D transitions in alkaline earths:
Ca*, Sr+, Ba*, Ra*, (Yb*, Hg*) efc.
qubit states are lmplemented as long Lived
electronic states of atowms P
112 A
—_ D5f2
AE ~ Yoo Y Ha \r?
~ 20 kK LS
~ 2 oV
Loures from lnnsbruck orou
flgures £ group 1 s, L% 16>

(Mttp://ma vt-c 704 .uiblk.ac.at/)

\be % QE “’o( ‘\’II(COQ_,\
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electrons in quantum dots:

double quantuum dot

control tndividual electrons

flgures from Delft group
(nttp://attn tudelft.nl/)
GaAs/AlGaAs heterostructure
2DEG 90 nm deep
NTT ® ns = 2.9 x 10t cm2
Spin states of electrons as qubit states B=0 B>0
Lnteraction with external magwnetic field B A " \L A —
%t"‘ E ~ loo |
*,. . |OHsB
* T
v

AG ~ Y5, Mt»
A 20 ML(
~ YR Y\QV
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superconducting cireuits:

qubits made from clreuit elements  —VWWA= o | 30~ -E-

3 = — o
clreulating curvents are qublit states G \ ) - C

made from sub-micron scale
superconducting tnductors and
copacitors
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polarization states of photons:

Photon Polarization

- qubit states corvesponding to different )=o) V By = (1)

polarizations of a single photon (in the visible
frequency range)

- are used Ln gquantum

cryptography and for

qua ntum

The BB84 Protocol: : Detector

communteation HN 45¢-45°
- photons are also used tn

the one-way quantum .
Single Photor—¢

computer s ‘ ‘
ouree IAIice’s Bt 10010101
BOb'S BOSiS .. . . .. - . Bennet and Brassard Proc
Bob'sResulf 00O 01 00 1 1 of. Int.Conf. Computers,
Key -00 1 - -] Systems & Signal
Processing, Bangalore
India 175 (1984)
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Two Rubits:
2 classieal bits with states: 2 qubits with quantum states:
b\ bl 2 qubd qug“éz
(o) o l 6o )
o ( (019
| o (( o9
{ | fieS
- 2" different states (heve n=2) - 2" basls states (W=2)
- butonly one is realized at - con be realized simultaneously
any given time - quantum parallelism

2" complex coefficlents describe quantum state
Y2 = o, 1000 +0¢, (O1) $ 00, 110D + o ol

2
normalization condition 2 (o{ 'S ﬁ =
IS
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CDVWPDSLte quantum systems

QM postulate: The state space of a composite systems is the tensor product of the state spaces

of the component physical systems. 1f the component systems have states i the composite
system state is

(¢) = ¥y e [v,) 0.0 @Iy 3

This is a product state of the tndividual systems.

exanple: H’J = % [o) 4 @I )
[ @, 7> %2lo) +p )
~—0 (LF? = ‘(Pt>®\%2> = ]({/(k{/1>
= =&, 1007 t o« M0 4 b, 11 4 € p, (1)

exercise: Write dowwn the state vector (matrix vepresentation) of two qubits, Le. the tensor
pmdw:t, Ln the computational basts. Wiite dowwn the basils vectors 0{ the composlte system.

there is wo generalization O{ELDCM sphere pictuwe to many qulbits
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nformation content tn multiple qubits

2% complex coefficlents describe state of o composite quantum system with n oulbits!
magine to have 500 qubits, then 2°°° complex coefficlents describe thelr state.

How to store this state. 2°°° (s larger than the number of atoms in the universe. It is lmpossible
n classteal bits. This s also wl/ud it s havd to sbmulate quantum systems on classteal
computers.

A quantum computer woulol be much more effictent thaw a classical computer at sbmulating
quantum systems.

Make use of the information that can be stored in qubits for quantum tnformation processing!
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Operators on composite systems:

Let A anol B be operators on the component systems deseribed by state vectors |a> and [b>.
Thew the operator acting on the composite system s written as

Ael (1D ®kd) = Alde B

tensor product bn matrix vepresentation (example for 2D Hilbert spaces):

AB A(Z&>
A® % /41(3 A‘LLB
c\\\(ﬂ7> O‘\i‘
e 6 = A
\0\> > qa“’) «, ;‘
Qy b,
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eEntanglement:

Definition: An entangled state of a composite system (s a state that cannot be written as a
product state of the component systems.

exawmple: an enta wg led 2-qulbit state (one of the Bell states)
147 = = (100 + (1))
what is special about this state? Try to write it as a product state!
¥, )= «[0) te, (1) i (%27 - , (o) + /42/,)
(Y€, = oy | 00) +o<|mar> b lod 4 6, (10
147 = [4f.) =D upc;%’*z A fﬁ@; = B, #0
/(o(&#((-o,/

ml-

It Ls not posstble! This state is special, it is entangled!
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Measurement of single qubits tn an entangled state:

mensurement of flrst gubit:
- * T = L <Cool = (oo) - +
) KI(MpeaXT)™ (NgeTHY1Y¥D a < A o) >
post measurement state:

{
M _eT)ly = o=
)q)l) =( ® > P _ VI ) _ (ao>

I'e o) =

mensurerment of qublt two will thew result with cevtainty tn the same result:
Prlo) = <Y' (zem,\" (Tom,fl¢> =1

The two mensurement results are correlated! Corvelations in quantum systems can be
stronger thaw correlations in classical systems. This can be generally proven using the
Bell inequalities wiich will be discussed Later. Make use of such corvelations as a resource
for information processing, for example in super dense coding and teleportation.
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Two Rubit Ruantum Logic qates
The controlled NOT gate (CNOT):
function: |o2) ——p 1°0)
lotH —D lol1)D
[to) —o 111D
(I —> (2>
\A'\E) —n \AA®@R)D addition wod 2 of basis states

CNOT clreuit:
(A) ———

[AS control qubit
Vo)—————— B — | ABER) target qubit

comparison with classical gates:
XOR Ls not veverstble
CNOT Ls reversible (umta@)

Universality of controlled NOT:
Any multl qubit logle gate can be composed of CNOT gates and single qubit gates X,Y,Z.
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application of CNOT: generation of entangled states (Bell states):

o) _,,\_,@

1 l S (e + 1)

() BS
N ouT
\00) ~\j_LD -J_TL(\O()) * “O)) CND( \./.(i ( [osd 4+ (Il))

W, 57
o) \—> —;:E (to > +my) e r\E (tery+ Hb))

1o} _,.;7 L (\oo)-—\lo)> LT é((oo)*\'ﬂ)

oy 2 —\F oty = uiy) =25 r(? (tary—Tf10y)

exercise: Write down the unitary matrix vepresentations of the CNOT in the computational
basis with qubit 1 being the control qubit. write dowwn the wmatrix tn the same basis with
qubit 2 betng the control bit.
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mplementation of CNOT:

Ising bnteraction: h=-2Z c} Z 25 pair wise spin bnteraction
¥ I
N N
oeneric two-qubit interaction: {‘-E = - ; Z\ 22
) > o: fervomagnetic coupling ) < o: anti-ferrom. coupling
E'I vy T T e (1 E ]‘u}—v (14 o (L)
3 T WD er (1) o Wer(y

’\'\ S{— 2 /\é‘-
2. C
2—qubﬁt uwﬁtwg evolution: C,(K) = @

BUT this does not realize o CNOT gate yet. Additionally, single qubit operations on each of
the qubits are required to vealize n CNOT gate.
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CNOT realization with the lsing-type interaction:

CNOT - MthWH:
- 2T

Co~ % R, () C(¥F) 0y (£ B (T)R,(Z) R, () C[E)

PoT

clreult Vepresewtatﬁow:

— — Q‘h "}(E —
az%
— (O [k f;.@”

Il

Any physteal two-qubit interaction that can produce entanglement can be turned into a
universal two-qubit gate (such as the CNOT gate) when it Ls augmented by arbitrary
single qubit operations. [Bremuner et al., PRL 89, 247902 (2002)]
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RUANEUM TcLepovtatx’,ow:

Task: Alice wants to transfer an wnknown gquantum state y to Bob only using one
entangleo patlr of qubits and classical information as a resource.

note:

- Alice does not know the state to be transmitted

- Bven If she knew it the classical amownt of information that she would neeol to senol woulol be
infinite.

The teLeportatLow clreutt:
® @ @ ® ®
vy ————e— (——rb

-—;:l\\oo7 +\u)> Ej\ﬂ( \

1" A f—— ¥

original article:

Teleporting an unknown guantum state via dual classical and Einstein-Podolsky-Rosen channels
Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters
Phys. Rev. Lett. 70, 1895 (1993) [PROLA Link]
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How does Lt work?

©) \W}&—}_;(loojx\n)) = J(—f (b(looo)o%e((otl)»i-@\loo) wplaD )

CNOT between qulbit to be teleporteo and one bit of the entangled pair:
CNUT:Z

@ >—“]:z(ea\oaa)+o<|°(,> 4~F\lto) -\-,&]te())
Hadamard on qubit to be teleported:

&) H. > —‘Z[( l02) (o(lz>+{5|l>) + luo)(\xlo>-(g{s))
+ o) (o((\),‘@,(o)) + W) ("(“}“/5(0)):(

measurement of qubit 1 and 2, classical information transfer and single bit

manipulation on target qubit =: @
n(eﬂt \ r\?
@ — (@,> = ocloy + £ (15 —s  (¥)
Z
Pro ™ {—_(- X [\-f3> = ooy - IS —> l¥ /2
§ \ X
Pos =i & LBy meldsprey > 1Y)
Xz
?u = }Q ' IYB> = o(\‘>~\8|°> Z (L'P>
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(one) experimental rRealization of Teleportation using Photon Polarization:

EPR-source

- ]3[2 rametric down conversion (PDC’) Experimental quantum teleportation
Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, Anton Zeilinger

source 0{ enta V\'@ L@O{ PMOtD ne Nature 390, 575 - 579 (11 Dec 1997) Article
- q%bLtS ave ‘PoLa vrizatlon encoded Abstract | Full Text | PDF | Rights and permissions | Save this link
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Experimewtm lmpLemewtat’ww

start with states

oy ) = o kD = b lud

CREESEIHERNTY

L
\z.

comboine photon to be teleported (1) and
one photon of entangled pair (2) on a

50/50 beav splitter (BS) and wmeasure
(at Alice) resulting state in Bell basis.

analyze resulting teleported state of - polavizing beam splitters
photon (3) using polarizing beam (PBS) as detectors of
splitters (PBS) single photon detectors teleported states
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teleportation papers for You to present:

Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu
Phys. Rev. Lett. 80, 1121 (1998) [PROLA Link

Unconditional Quantum Teleportation

A. Furusawa, J. L. Sgrensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik

Science 23 October 1998 282: 706-709 [DOI: 10.1126/science.282.5389.706] (in Research Articles)
Abstract » Full Text » PDF »

Complete quantum teleportation using nuclear magnetic resonance
M. A. Nielsen, E. Knill, R. Laflamme

Nature 396, 52 - 55 (05 Nov 1998) Letters to Editor

Abstract | Full Text | PDF | Rights and permissions | Save this link

Deterministic quantum teleportation of atomic qubits

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D. J. Wineland
Nature 429, 737 - 739 (17 Jun 2004) Letters to Editor

Abstract | Full Text | PDF | Rights and permissions | Save this link

Deterministic quantum teleportation with atoms

M. Riebe, H. HAxoffner, C. F. Roos, W. HAgnsel, J. Benhelm, G. P. T. Lancaster, T. W. KA{rber, C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt
Nature 429, 734 - 737 (17 Jun 2004) Letters to Editor

Abstract | Full Text | PDF | Rights and permissions | Save this link

Quantum teleportation between light and matter

Jacob F. Sherson, Hanna Krauter, Rasmus K. Olsson, Brian Julsgaard, Klemens Hammerer, Ignacio Cirac, Eugene S. Polzik
Nature 443, 557 - 560 (05 Oct 2006) Letters to Editor

Full Text | PDF | Rights and permissions | Save this link
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