Dynamics of a Quantum System:
QM postulate: The time evolution of a state $|\psi\rangle$ of a closed quantum system is described by the schrödinger equation

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

where His the hermitian operator known as the Hamiltonian describing the closed system.
a closed quantum system does not interact with any other system
general solution:

$$
|\psi(t)\rangle=\exp \left[\frac{-i H t}{\hbar}\right]|\psi(0)\rangle
$$

the Hamiltonian:

- His hermitian and has a spectral decomposition $\quad H=\sum_{E} E|E\rangle\langle E|$
- and eigenvectors |E>
- smallest value of E is the ground state energy with the eigenstate |E>
example:

e.g. electron spin in a field:

on the Bloch sphere:

$$
\begin{aligned}
& H=-\frac{\hbar \omega}{2} Z \\
& H=-\frac{\hbar \omega}{2}(|0\rangle\langle 0|-|1\rangle\langle 1|) \\
& |\psi(0)\rangle=|0\rangle \rightarrow|\psi(t)\rangle=e^{\frac{i \omega}{2} t}|0\rangle \\
& |\psi(0)\rangle=|1\rangle \rightarrow|\psi(t)\rangle=e^{-\frac{i \omega}{2} t}|1\rangle \\
& \left.|\psi(0)\rangle=\frac{1}{\sqrt{2}}(10)+|1\rangle\right) \\
& =\frac{1}{\sqrt{2}} e^{i \psi^{t} t}\left(|0\rangle+e^{-i \omega t}|1\rangle\right) \\
& |\psi\rangle-e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\right) \\
& \Rightarrow \quad \theta=\frac{\pi}{2}, \varphi=-\omega t
\end{aligned}
$$

this is a rotation around the equator with Larmor precession frequency ω

Rotation operators:

when exponentiated the Pauli matrices give rise to rotation matrices around the three orthogonal axis in 3-dimensional space.

$$
R_{x}(\theta)=e^{-i \theta X / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)
$$

$$
R_{y}(\theta)=e^{-i \theta y / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} y=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)
$$

$$
R_{z}(\theta)=e^{-i \theta z / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z=\left(\begin{array}{cc}
e^{-i \theta / 2} & \theta \\
0 & e^{i \theta / 2}
\end{array}\right)
$$

If the Pauli matrices X, Y or Z are present in the Hamiltonian of a system they will give rise to rotations of the quit state vector around the respective axis.
exercise: convince yourself that the operators $R_{x, y, z}$ do perform rotations on the quit state written in the Bloch sphere representation.

control of Single Qubit States

by resonant irradiation:

$$
\prod_{\sim}^{\sim_{x_{x} \cos (0 t)}} \frac{\int \Delta}{\Delta E=\hbar \omega_{a}}
$$

quit Hamiltonian with ac-drive:

$$
H=\hbar\left[\frac{\omega_{a}}{2} \hat{z}+\lambda_{x} \cos (\omega t) \hat{x}+\Omega_{g} \sin (\omega t) \hat{y}\right]
$$

ac-fields applied along the x and y components of the quit state
unitary transform:

$$
H^{\prime}=u H u^{+}-i u \dot{u}^{-1}
$$

$$
\text { with } U=e^{-i \frac{\omega}{2} t \hat{z}}
$$

result:

$$
\begin{aligned}
H^{\prime}=\hbar\left[\frac{\omega_{a}-\omega}{2} \hat{z}\right. & +\frac{\Omega_{x}}{2} \hat{x}\left(1+e^{2 i \omega t}\right) \\
& \left.+\frac{R_{s}}{2} \hat{y}\left(1-e^{-2 i \omega t}\right)\right]
\end{aligned}
$$

drop fast rotating terms (RWA): $H^{\prime} \approx \frac{\hbar}{2}\left[\Delta \hat{z}+\lambda_{x} \hat{x}+\Omega_{g} \hat{\}}\right]$
with detuning:

$$
\Delta=\omega_{a} \omega
$$

1.e. irradiating the qubit with an ac-field with controlled amplitude and phase allows to realize arbitrary single qubit rotations.
preparation of qubit states: initial state $\mid 0>$:

preparation of a superposition state:

$$
\begin{array}{lll}
x_{\pi / 2} \text { pulse: } & \Omega_{x} t=\frac{\pi}{2} & 10)-\frac{(0)+11)}{\sqrt{2}} \\
Y \pi / 2 \text { pulse: } & \Omega_{g} t=\frac{\pi}{2} & (0)-\frac{1 \pi / 2}{}-\frac{(0)+i(1)}{\sqrt{2}}
\end{array}
$$

in fact such a pulse of chosen length and phase can prepare any single qubit state, i.e. any point on the Bloch sphere can be reached

Quantum Measurement

One way to determine the state of a quit is to measure the projection of its state vector along a given axis, say the z-axis.

On the Bloch sphere this corresponds to the following operation:

After a projective measurement is completed the quit will be in either one of its computational basis states.
in a repeated measurement the projected state will be measured with certainty.

QM postulate: quantum measurement is described by a set of operators $\left\{M_{m}\right\}$ acting on the state space of the system. The probability p of a measurement result m occurring when the state ψ is measured is

$$
p(m)=\langle\psi| M_{m}^{+} M_{m}|\psi\rangle
$$

the state of the system after the measurement is

$$
\left|\psi^{\prime}\right\rangle=\frac{M_{m}|\psi\rangle}{\sqrt{\rho(m)}}
$$

completeness: the sum over all measurement outcomes has to be unity

$$
1=\sum_{m} p(m)=\sum_{m}\langle\psi| M_{m}^{+} M_{m}|\psi\rangle
$$

example: projective measurement of a quit in state ψ in its computational basis

$$
|\psi\rangle=\alpha(0)+\beta(1)
$$

measurement operators:

$$
\left|M_{0}\right\rangle=|0\rangle\langle 0|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad ; \quad M_{1}=|1\rangle\langle 1|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

measurement probabilities:

$$
\begin{aligned}
& p(0)=\langle\psi| M_{0}^{+} M_{0}|\psi\rangle=\alpha^{*} \alpha\langle 0 \mid 0\rangle=|\alpha|^{2} \\
& p(1)=\langle\psi| M_{1}^{+M_{1}}|\psi\rangle=\left.\beta^{*} \beta\langle(11\rangle=| \beta\right|^{2}
\end{aligned}
$$

state after measurement:

$$
\begin{aligned}
& \frac{M_{0}|\psi\rangle}{\sqrt{\rho(0)}}=\frac{\alpha \mid 0)}{\sqrt{|\alpha|^{2}}}=\frac{\alpha}{(\alpha \mid}|0\rangle \\
& \frac{M_{1}|\psi\rangle}{\sqrt{\rho(1)}}=\frac{\beta|1\rangle}{\sqrt{|\beta|^{2}}}=\frac{\alpha}{|\alpha|}|1\rangle
\end{aligned}
$$

measuring the state again after a first measurement yields the same state as the initial measurement with unit probability

QSIT07.2 Page 9
information content in a single quit:

- infinite number of qubit states
- but single measurement reveals only or 1 with probabilities $|\alpha|^{2}$ or $|\beta|^{2}$
- measurement will collapse state vector on basis state
- to determine α and β an infinite number of measurements has to be made

But, if not measured qubit contains 'hidden' information about and B.

A Few Physical Realizations of Qubits
energy scales:
nuclear spins in molecules:

$$
\begin{aligned}
& 1 G H z=50 \mathrm{mk} \\
& 1 G H z=4 \mu \mathrm{eV}
\end{aligned}
$$

- nuclear magnetic moment in external magnetic field

- distinct energies of
different nuclei

figures from MIT group (www.mit.edu/~ichuang/)
chain of ions in an ion trap:

quit states are implemented as long lived
electronic states of atoms

$$
\begin{aligned}
\Delta E & \sim 400 T H z \\
& \sim 20 \mathrm{kK} \\
& \sim 2 \mathrm{cV}
\end{aligned}
$$

figures from innsbruck group (http://heart-c704.uible.ac.at/)

electrons in quantum dots:

- double quantum dot
- control individual electrons
figures from Delft group
(http://at.tu.tudelft.nl/)

Nu

GaAs/AIGaAs heterostructure
2DEG 90 nm deep
$\mathrm{n}_{\mathrm{s}}=2.9 \times 10^{11} \mathrm{~cm}^{-2}$

- spin states of electrons as qubit states
- interaction with external magnetic field B

QSIT07.2 Page 13
superconducting circuits:

- quits made from circuit elements

\cdots

- circulating currents are qubit states

- made from sub-micron scale
superconducting inductors and capacitors

$\begin{aligned} \Delta E & \sim 10 \mathrm{GHz} \\ & \sim 500 \mathrm{mK} \\ & \sim 40 \mathrm{mV}\end{aligned}$
polarization states of photons:
- qubít states corresponding to different polarizations of a single photon (in the visible frequency range)

Photon Polarization

- are used in quantum
cryptography and for quantum
communication
- photons are also used in the one-way quantum computer

QSIT07.2 Page 15

Two Qubíts:

2 classical bits with states:
2 quits with quantum states:
bit 1 bit 2
quit 1 qubit 2

$\left.\begin{array}{l}100 \\ 100 \\ 101 \\ 1 \\ 1 \\ 1\end{array} 113\right)$

- 2^{n} different states (here $n=2$)
- 2^{n} basis states ($n=2$)
- but only one is realized at any given time
- can be realized simultaneously
- quantum parallelism
2^{n} complex coefficients describe quantum state

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

normalization condition

$$
\sum_{i j}\left|\alpha_{i j}\right|^{2}=1
$$

composite quantum systems

QM postulate: The state space of a composite systems is the tensor product of the state spaces of the component physical systems. If the component systems have states ψ_{i} the composite system state is

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \Leftrightarrow\left|\psi_{m}\right\rangle
$$

This is a product state of the individual systems.

$$
\text { example: } \quad \begin{aligned}
\left|\psi_{1}\right\rangle & =\alpha_{1}|0\rangle+\beta_{1}|1\rangle \\
\left|\psi_{2}\right\rangle & =\alpha_{2}|0\rangle+\beta_{2}(1\rangle \\
\sim \quad|\psi\rangle & =\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left|\psi_{1} \psi_{2}\right\rangle \\
& =\alpha_{1} \alpha_{2}|00\rangle+\alpha_{1} \beta_{2}|01\rangle+\beta_{1} \alpha_{2}|10\rangle+\beta_{1} \beta_{2}|11\rangle
\end{aligned}
$$

exercise: Write down the state vector (matrix representation) of two quits, i.e. the tensor product, in the computational basis. Write down the basis vectors of the composite system.
there is no generalization of Bloch sphere picture to many qubits

QSIT07.2 Page 17

Information content in multiple quits

- 2^{n} complex coefficients describe state of a composite quantum system with n quits!
- imagine to have 500 qubits, then 2^{500} complex coefficients describe their state.
- How to store this state. 2^{500} is larger than the number of atoms in the universe. It is impossible in classical bits. This is also why it is hard to simulate quantum systems on classical computers.
- A quantum computer would be much more efficient than a classical computer at simulating quantum systems.
- Make use of the information that can be stored in qubits for quantum information processing!

Operators on composite systems:

Let A and B be operators on the component systems described by state vectors $|a\rangle$ and $|b\rangle$. Then the operator acting on the composite system is written as

$$
A \otimes B(|a\rangle \otimes|b\rangle)=A|a\rangle \otimes B|b\rangle
$$

tensor product in matrix representation (example for 2D Hilbert spaces):

$$
\begin{aligned}
& A \otimes B=\left(\begin{array}{llll}
A_{11} & B & A_{12} & B \\
A_{21} & B & A_{22} & B
\end{array}\right) \\
& |a\rangle \otimes|b\rangle=\left(\begin{array}{ll}
a_{1} & |b\rangle \\
a_{2} & |b\rangle
\end{array}\right)=\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{1} & b_{2} \\
a_{2} & b_{1} \\
a_{2} & b_{2}
\end{array}\right)
\end{aligned}
$$

Entanglement:

Definition: An entangled state of a composite system is a state that cannot be written as a product state of the component systems.
example: an entangled 2-qubit state (one of the Bell states)

$$
\left.|\psi\rangle=\frac{1}{\sqrt{2}}(100\rangle+(11\rangle\right)
$$

What is special about this state? Try to write it as a product state!

$$
\begin{aligned}
& \left.\left|\psi_{1}\right\rangle=\alpha_{1}|0\rangle+\beta_{1}|1\rangle ;\left|\psi_{2}\right\rangle=\alpha_{2}(0\rangle+\beta_{2} \mid 1\right) \\
& \left|\psi_{1} \psi_{2}\right\rangle=\alpha_{1} \alpha_{2}|00\rangle+\alpha_{1} \beta_{2}|01\rangle+\beta_{1} \alpha_{2}(10\rangle+\beta_{1} \beta_{2}(11\rangle \\
& |\psi\rangle \stackrel{!}{=}\left|\psi_{1} \psi_{2}\right\rangle \Rightarrow \alpha_{1} \alpha_{2}=\frac{1}{\sqrt{2}} \Lambda \beta_{1} \beta_{2}=\frac{1}{\sqrt{2}} \Rightarrow \alpha_{1} \beta_{2} \neq 0
\end{aligned}
$$

$$
\Lambda \alpha_{2} \beta_{1} \neq 0!
$$

It is not possible! This state is special, it is entangled!

Measurement of single quits in an entangled state:

$$
\left.|\psi\rangle=\frac{1}{\sqrt{2}}((\infty)+111)\right)
$$

measurement of first qubit:

$$
\left.\left.\rho_{1}(0)=\langle\psi|\left(\Pi_{0} \otimes I\right)^{t}\left(\mu_{0} \otimes I\right)|\psi\rangle=\frac{1}{\sqrt{2}}\langle 00| \frac{1}{\sqrt{2}} \right\rvert\, 00\right)=\frac{1}{2}
$$

post measurement state:

$$
\left.\left|\psi^{\prime}\right\rangle=\frac{\left(M_{0} \otimes I\right)|\psi\rangle}{\sqrt{P_{1}(0)}}=\frac{\frac{1}{\sqrt{2}}|00\rangle}{\frac{1}{\sqrt{2}}}=100\right\rangle
$$

measurement of qubit two will then result with certainty in the same result:

$$
P_{2}(0)=\left\langle\psi^{\prime}\right|\left(I \otimes M_{0}\right)^{+}\left(I \otimes M_{0}\right\rangle\left|\psi^{\prime}\right\rangle=1
$$

The two measurement results are correlated! correlations in quantum systems can be stronger than correlations in classical systems. This can be generally proven using the Bell inequalities which will be discussed later. Make use of such correlations as a resource for information processing, for example in super dense coding and teleportation.

TWo Qubit Quantum Logic Gates

The controlled NOT gate (CNOT):
function:

$$
\begin{aligned}
& 100\rangle \longrightarrow 100\rangle \\
& 101\rangle=D 101\rangle \\
& 110\rangle=D \quad 111\rangle \\
& 111\rangle=110\rangle \\
& |A, B\rangle \longrightarrow|A, A \oplus B\rangle \text { addition mod } 2 \text { of basis states }
\end{aligned}
$$

CNOT circuit:

comparison with classical gates:

- XOR is not reversible
- CNOT is reversible (unitary)
universality of controlled NOT:
Any multi qubit logic gate can be composed of CNOT gates and single qubit gates X, Y, Z.
application of CNOT: generation of entangled states (Bell states):
exercise: Write down the unitary matrix representations of the CNOT in the computational basis with qubit 1 being the control quit. Write down the matrix in the same basis with quit 2 being the control bit.
implementation of CNOT:
Isinginteraction: $\quad H=-\sum_{i j} \partial_{i j} \hat{z}_{i} \hat{z}_{j}$ pairwise spininteraction
generic two-qubit interaction: $f\left(=-\jmath \hat{z}_{1} \hat{z}_{2}\right.$
$J>0$: ferromagnetic coupling

$$
\begin{array}{rll}
E \uparrow+\jmath & \cdots & \mid \uparrow \downarrow) \text { or }(\downarrow \uparrow\rangle \\
-\jmath & \cdots & \mid \downarrow \downarrow) \text { or }(\uparrow \uparrow)
\end{array}
$$

$$
\begin{array}{ll}
J<0: \text { anti-ferrom. coupling } \\
\uparrow+\partial & \mid \uparrow \uparrow) \text { or }(\downarrow \downarrow) \\
-\} & |\uparrow\rangle\rangle \text { or }(\downarrow \uparrow\rangle
\end{array}
$$

2-qubit unitary evolution: $\quad C(\gamma)=e^{-i \frac{\gamma}{2} \hat{z}_{1} \hat{z}_{2}}$

BUT this does not realize a CNOT gate yet. Additionally, single quit operations on each of the quits are required to realize a CNOT gate.

$$
\begin{aligned}
& |0\rangle \cdots \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \text { in } \\
& \left.\left.\mid 00) \xrightarrow{H_{1}} \frac{1}{\sqrt{2}}(\mid 00)+| | 0\right\rangle\right) \xrightarrow{C N_{0} T} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \left.\left.\mid 01) \xrightarrow{H_{1}} \frac{1}{\sqrt{2}}(101\rangle+|11\rangle\right) \xrightarrow{\text { NOT }} \frac{1}{\sqrt{2}}(|01\rangle+110\rangle\right) \\
& \left.\left.|10\rangle \xrightarrow{H_{1}} \frac{1}{\sqrt{2}}(100\rangle-| | 0\right\rangle\right) \xrightarrow{\text { CoOT }} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left.\left.|11\rangle \xrightarrow{H_{1}} \frac{1}{\sqrt{2}}(101\rangle-|11\rangle\right) \xrightarrow{\text { NOT }} \frac{1}{\sqrt{2}}(101)-|10\rangle\right)
\end{aligned}
$$

CNOT realization with the ising-type interaction:

CNOT-unitary:

$$
C_{N 0 T}=e^{-i \frac{3 \pi}{4}} R_{x_{2}}\left(\frac{3 \pi}{2}\right) C\left(\frac{3 \pi}{2}\right) R_{z 2}\left(\frac{\pi}{2}\right) R_{x_{2}}\left(\frac{\pi}{2}\right) R_{z 2}\left(\frac{\pi}{2}\right) R_{z 1}\left(\frac{\pi}{2}\right) C\left(\frac{3 \pi}{2}\right)
$$

circuit representation:

\equiv

Any physical two-qubit interaction that can produce entanglement can be turned into a universal two-qubit gate (such as the CNOT gate) when it is augmented by arbitrary single quit operations. [Bremner et al., PRL 89, 247902 (2002)]

QSIT07.2 Page 25

Quantum Teleportation:

Task: Alice wants to transfer an unknown quantum state ψ to Bob only using one entangled pair of quits and classical information as a resource.

note:

- Alice does not know the state to be transmitted
- Even if she knew it the classical amount of information that she would need to send would be infinite.

The teleportation circuit:

original article:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters
Phys. Rev. Lett. 70, 1895 (1993) [PROLA Link]
(1) $\quad|\psi\rangle \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|11\rangle)$

CNOT between qubit to be teleported and one bit of the entangled pair:
(2) $\left.\xrightarrow{\text { NOT } 12} \frac{1}{\sqrt{2}}(\alpha|000\rangle+\alpha|0(1)+\beta| 110\rangle+\beta|101\rangle\right)$

Hadamard on quit to be teleported:
(3)

$$
\begin{aligned}
\xrightarrow[H]{H} & \frac{1}{2}[(100)(\alpha|0\rangle+\beta|1\rangle)+|10\rangle(\alpha|0\rangle-\beta|1\rangle) \\
& +|01\rangle(\alpha|1\rangle+\beta(0\rangle)+\mid 11)(\alpha|1\rangle-\beta|0\rangle)]
\end{aligned}
$$

measurement of qubit 1 and 2, classical information transfer and single bit manipulation on target quit 3:

(4) $\xrightarrow{M_{1} \otimes M_{2}}$

$$
P_{00}=\frac{1}{4} ;\left|\psi_{3}\right\rangle=\alpha|0\rangle+\beta(1\rangle \xrightarrow{I}|\psi\rangle
$$

$$
P_{10}=\frac{1}{4} ;\left|\psi_{3}\right\rangle=\alpha|0\rangle-\beta|1\rangle \xrightarrow{Z}|\psi\rangle
$$

$$
\text { Cor }=\frac{1}{4} ;\left|\psi_{3}\right\rangle=\alpha|1\rangle+\beta|0\rangle \xrightarrow{x} \quad|\psi\rangle
$$

$$
P_{11}=\frac{1}{4} ;\left|\psi_{3}\right\rangle=\alpha|1\rangle-\beta|0\rangle \xrightarrow{x z}|\psi\rangle
$$

QSIT07.2 Page 27
(One) Experimental Realization of Teleportation using Photon Polarization:

- parametric down conversion (PDC)
source of entangled photons
- quits are polarization encoded

[^0]
Experimental implementation

start with states
$\left|\psi_{1}\right\rangle=\alpha|H\rangle+\beta|v\rangle$

combine photon to be teleported (1) and one photon of entangled pair (2) on a 50/50 beam splitter (BS) and measure (at Alice) resulting state in Bell basis.
analyze resulting teleported state of
photon (3) using polarizing beam
splitters (PBS) single photon detectors

- polarizing beam splitters
(PBS) as detectors of teleported states
teleportation papers for you to present:

Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu

Phys. Rev. Lett. 80, 1121 (1998) [PROLA Link]

Unconditional Quantum Teleportation

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik

Science 23 October 1998 282: 706-709 [DOI: 10.1126/science.282.5389.706] (in Research Articles)
Abstract » Full Text » PDF »

Complete quantum teleportation using nuclear magnetic resonance

M. A. Nielsen, E. Knill, R. Laflamme

Nature 396, 52 - 55 (05 Nov 1998) Letters to Editor
Abstract | Full Text | PDF | Rights and permissions | Save this link

Deterministic quantum teleportation of atomic qubits

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D. J. Wineland

Nature 429, 737-739 (17 Jun 2004) Letters to Editor
Abstract | Full Text | PDF | Rights and permissions | Save this link

Deterministic quantum teleportation with atoms

M. Riebe, H. HÃaffner, C. F. Rocs, W. HÃønsel, J. Benhelm, G. P. T. Lancaster, T. W. KÃๆrber, C. Beecher, F. Schmidt-Kaler, D. F. V. James, R. Blatt Nature 429, 734-737 (17 Jun 2004) Letters to Editor
Abstract | Full Text | PDF | Rights and permissions | Save this link

Quantum teleportation between light and matter

Jacob F. Sherson, Hanna Krauter, Rasmus K. Olsson, Brian Julsgaard, Klemens Hammerer, Ignacio Cirac, Eugene S. Polzik
Nature 443, 557-560 (05 Oct 2006) Letters to Editor
Full Text | PDF | Rights and permissions | Save this link

[^0]: Experimental quantum teleportation
 Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, Anton Zeilinger Nature 390, 575 - 579 (11 Dec 1997) Article
 $\underline{\text { Abstract }}|\underline{\text { Full Text }}| \underline{\text { PDF } \mid ~ R i g h t s ~ a n d ~ p e r m i s s i o n s ~} \mid \underline{\text { Save this link }}$

