1.0 Introduction to Quantum Systems for Information Technology

1.1 Motivation What is quantum mechanics good for?

traditional historical perspective:

- beginning of 20th century:
 - classical physics fails to explain phenomena observed in nature
 - \circ stability of atoms
 - \circ $\;$ discrete spectra of light emitted by atoms
 - \circ $\,$ spectrum of black body radiation
- use quantum mechanics to explain phenomena occurring in nature
 - properties of microscopic systems (atoms, nuclei, electrons, elementary particles)
 - energy level quantization
 - tunneling
 - entanglement
 - ...
 - \circ properties of macroscopic systems
 - superconductivity
 - electronic band structure of semiconductors
 - ...
- quantum mechanics is a hugely successful theory ...
- ... but its concepts are difficult to grasp
 - $\circ \quad \text{EPR paradox} \quad$
 - entanglement
 - quantum measurement

QSIT08.V01 Page 1

... Motivation

- early on study of quantum information and quantum computation is motivated by desire to better understand quantum mechanics
 - relation between information and physics Rolf Landauer: information is physical
 - 80's: Can quantum mechanics be used to transmit information faster than light? No: shown in the context of the *no-cloning theorem.*

Efforts to try to make use of quantum mechanics:

- Quantum computation and quantum information is the study of information processing that can be accomplished with quantum mechanical systems.
 - $\circ~$ it took a long time after the development of QM to invent this new field

quantum information processing is enabled by new technologies:

- 70's: develop complete control over single quantum systems
 - single atoms/ions/molecules
 - o single photons
 - o 90's: single electrons/spins/flux quanta in solid state

o ...

- explore new regimes of nature that only occur in single isolated quantum systems
- different from prior experiments in quantum phenomena in ensembles
 - superconductivity, collective quantum effect of 10²³ electrons
 - no information over individual electrons
 - $\circ~$ particle physics: analysis of constituents of matter
 - no control over individual particles

QSIT08.V01 Page 3

Classical information processing with electronic circuits

 first transistor at Bell Labs (1947) invented by John Bardeen, Walter Brittain, and Will Shockley

- 1 transistor
- size a few cm

• intel dual core processor (2006)

- 2.000.000.000 transistors
- smallest feature size 65 nm
- clock speed ~ 2 GHz
- power consumption 10 W
- 5 nW per transistor
- 2.5 10⁻¹⁸J per transistor per cycle

Moore's Law

QSIT08.V01 Page 6

Motivation	 state of the art: difficult to realize and control even a small quantum computer BUT the concepts do work and have been demonstrated prime factors of 15 = 3 * 5 have been calculated on a nuclear magnetic resonance (NMR) quantum computer ongoing research into realizing scalable hardware for a quantum computer solid state systems ions ongoing quest for quantum algorithms difficult to find efficient quantum algorithms that are better than classical ones any classical algorithm can be run on a quantum computer develop of novel approaches to information processing that are enabled by quantum mechanics
	 quantum communication (QC): efficient encoding of information in photons super dense coding (Bennett '92) unconditionally secure communication using individual photons quantum cryptography (Bennett, Brassard '84) state of the art: quantum cryptography is used in commercial applications for distributing keys in optical fiber networks [http://www.idquantique.com/] limited by loss of photons in optical fibers ongoing research into quantum repeaters to extend range
	QSIT08.V01 Page 7
1.2 Goals of Lecture: Quantum Systems for Information Technology • Introduction to Quantum Information Processing (QIP)	
	 understand basic concepts What are qubits? What are their properties? How to process information with quantum systems? Which algorithms can a quantum computer execute efficiently? get to know physical realizations How to realize a quantum information processor? Example: Superconducting Electronic Circuits

- □ characterization of qubits
- □ initialization, control and read-out of qubits
- □ realization of quantum logic
- gain general understanding of methods used to characterize physical realizations of quantum systems
- learn how to evaluate the physical properties and prospects of different qubit implementations
 - atomic qubits
 - photonic qubits
 - spin qubits
 - semiconductor qubits
 - ...

1.3 Structure of Course:	Quantum Systems for Information Technology
	 Introduction to Quantum Information Processing (QIP) basic concepts qubits and their properties single qubit control and measurement multiple qubits qubit/qubit interactions and logical operations basic quantum algorithms Deutsch-Josza Teleportation later: basic principles of factorization (Shor) and search algorithms (Grover)
	 Quantum Systems for Information Processing qubits based on superconducting quantum electronic circuits realizations of qubits in electronic circuits harmonic oscillators types of superconducting qubits qubit initialization measurement of the qubit state dispersive read-out other types of state measurements spectroscopy qubit state control and basic time-resolved measurements Rabi oscillations Ramsey fringes spin echo
	QSIT08.V01 Page 9
Structure:	Quantum Systems for Information Technology
	 Quantum Systems for Information Processing qubits based on superconducting quantum electronic circuits (continued) decoherence sources of decoherence reducing decoherence quantum state tomography single and two-qubit read-out two-qubit interactions
	 physical systems for QIP atomic qubits ions neutral atoms spin qubits nuclear spins electron spins semiconductor quantum dots electrostatic quantum dots self-assembled systems qubit/photon interactions cavity quantum electrodynamics