2.0 Basic Introduction to Quantum Information Processing

2.1 Classical information processing

2.1.1 The carrier of information

- binary representation of information as **bits** (Binary digITs).
- classical bits can take values either 0 or 1
- information is represented (and stored) in a physical system
 - o for example, as a voltage level at the input of a transistor in a digital circuit
- in Transistor-Transistor-Logic (TTL)
 - o "low" = logical 0 = 0 0.8 V
 - o "high" = logical 1 = 2.2 5 V
- similar in other approaches
 - o CMOS: complementary metal oxide semiconductor
 - o ECL: emitter coupled logic
- information is processed by operating on bits using physical processes
 - o e.g. realizing logical gates with transistors

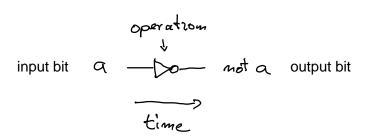
QSIT08.V02 Page 1

2.1.2 Processing information with classical logic

- decomposition of logical operations in single bit and two-bit operations

		truth table of operation	
		IN	OUT
- trivial single bit logic gate:	Identity	1 0	1 0
- non-trivial single bit logic gate:	NOT	0	1
		1	0

- circuit representation



- representation of time evolution of information
- each wire represents a bit and transports information in time
- each gate operation represented by a symbol changes the state of the bit

2.1.3 The universal two-bit logic gate

- logical operations between two bits: AND, OR, XOR, NOR ...
 - o can all be implemented using NAND gates

- Negation of AND

AND followed by NOT

truth table

IN OUT 00 01 10 1 (

circuit representation of the NAND gate:

Universality of the NAND gate:

- Any function operating on bits can be computed using NAND gates.
- Therefore NAND is called a universal logic gate.

read: Nielsen, M. A. & Chuang, I. L., QC and QI, chapter 3, Cambridge University Press, (2000)

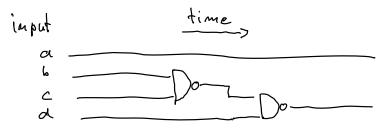
For quantum computation a set of universal gates has been identified

single qubit operations and the CNOT gate form a universal set of gates for operation of a quantum computer

QSIT08.V02 Page 3

2.1.4 Circuit representation

Any computable function can be represented as a circuit composed of universal gates acting on a set of input bits generating a set of output bits.



f = (6 NAUDC) NANDOL

logical circuit computing a function

- properties of classical circuits representing a function
 - wires preserve states of bits
 - FANOUT: single input bit can be copied
 - o additional working bits (ancillas) are allowed
 - CROSSOVER: interchange of the value of two bits
 - AND, XOR or NOT gates operate on bits
 - can be replaced by NAND gates using ancillas and FANOUT

Note:

- o number of output bits can be smaller than number of input bits
 - information is lost, the process is not reversible
- no loops are allowed

out put

- the process has to be acyclic
- A similar circuit approach is useful to describe the operation of a quantum computer.
 - But how to make good quantum wires?
 - o Can quantum information be copied?
 - o How to make two-bit logic reversible?
 - What is a set of universal gates?

2.1.5 Conventional classical logic versus quantum logic

Conventional electronic circuits for information processing

- work according to the laws of classical physics
- o quantum mechanics does not play a role in information processing

However:

- some devices used for information processing (LASERs, tunnel diodes, semiconductor heterostructures)
 operate using quantum mechanical effects on a microscopic level
- but macroscopic degrees of freedom (currents, voltages, charges) do usually not display quantum properties

Quantum mechanics for information processing

Questions:

- How can we make use of quantum mechanics for information processing?
- o Is there something to be gained?
- o How can a quantum information processor be realized?
- Which physical systems are promising candidates to realize a quantum information processor?
- Macroscopic solid state systems
 - What happens when circuits are miniaturized to near atomic scales?
 - Do they continue working the same way?
 - Does quantum mechanics get in the way or can it be used?
- Microscopic atomic systems
 - How to realize and control a fixed number of microscopic degrees of freedom individually?
 - Can systems be scaled up to large enough size to be interesting for information processing?

QSIT08.V02 Page 5

2.2 Quantum Bits

2.2.1 Classical Bits versus Quantum Bits

classical bit (binary digit)

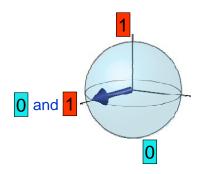
can take values 0 or 1

5 V 1

0 V 0

 realized e.g. as a voltage level 0 V or 5 V in a circuit qubit (quantum bit) [Schumacher '95]

 can take values 0 and 1 'simultaneously'



- realized as the quantum states of a physical system
- we will explore algorithms where the possibility to generate such states of the information carrying bit are essential

Schumacher, B., Quantum coding, *Phys. Rev. A* **51**, 2738-2747 (1995)

2.2.2 Definition of a Quantum Bit

Quantum bits (qubits) are quantum mechanical systems with two distinct quantum mechanical states.

Qubits can be realized in a wide variety of physical systems displaying quantum mechanical properties.

- o atoms, ions, molecules
- o electronic and nuclear magnetic moments
- charges in semiconductor quantum dots
- charges and fluxes in superconducting circuits
- o and many more ...

A suitable realization of a qubit should fulfill the so called **DiVincenzo criteria**.

Quantum Mechanical Description of a Qubit

A qubit has internal states that are represented as vectors in a 2-dimensional Hilbert space. A set of possible qubit (computational) basis states is:

Quantum Mechanics Reminder:

QM postulate I: The quantum state of an isolated physical system is completely described by its state vector in a complex vector space with a inner product (a **Hilbert Space** that is). The state vector is a unit vector in that space.

Note:

This mathematical representation of a qubit allows us to consider its abstract properties independent of its actual physical realization.

QSIT08.V02 Page 7

2.2.3 Superposition States of a Qubit

A quantum bit can take values (quantum mechanical states) | w>

or both of them at the same time in which case the qubit is in a superposition of states

· when the state of a qubit is measured one will find

10) with probability
$$|\alpha|^2 = \alpha \alpha^*$$

where the normalization condition is

on is
$$(\Psi|\Psi) = |\alpha|^2 + |\beta|^2 = 1$$

with $(\Psi| = |\Psi|)^+ = \alpha^* < 01 + \beta^* < 11 = (\alpha^*, \beta^*)$

This just means that the sum over the probabilities of finding the gubit in any state must be unity.

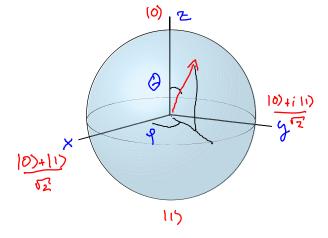
2.2.4 Bloch sphere representation of qubit state space

alternative representation of qubit state vector useful for interpretation of qubit dynamics

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$= e^{i\gamma} \left[\cos \frac{\theta}{2} |0\rangle + e^{i\gamma} \sin \frac{\theta}{2} |1\rangle \right] \qquad \begin{cases} \text{global phase factor} \\ \text{polar angle} \\ \text{azimuth angle} \end{cases}$$

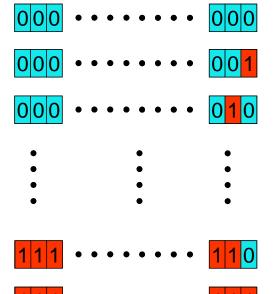
unit vector pointing at the surface of a sphere:



- ground state |0> corresponds to a vector pointing to the north pole
- excited state |1> corresponds to a vector pointing to the south pole
- equal superposition state (|0> + e^{i||}|1>)/2^{1/2} is a vector pointing to the equator

QSIT08.V02 Page 9

2.2.5 A register of N quantum bits



classical register:

- has 2^N possible configurations
- but can store only 1 number

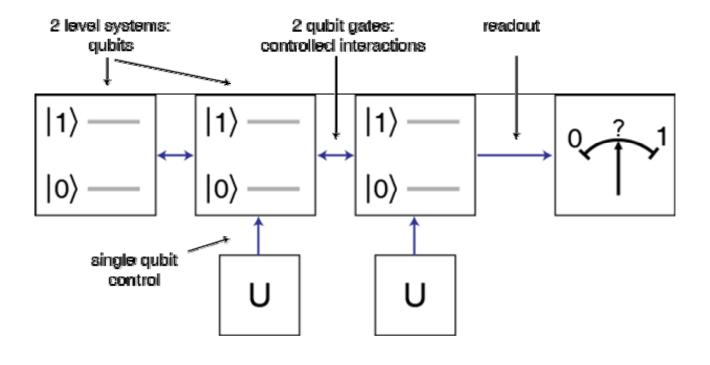
quantum register:

- has 2^N possible basis states
- can store superpositions of all numbers simultaneously

Goal: Try to process superposition of numbers simultaneously in a quantum computer.

• But what is needed to construct a quantum computer and how would it be operated?

2.3 Basic Components of a Generic Quantum Processor



QSIT08.V02 Page 11

2.3.1 The 5 DiVincenzo Criteria for Implementation of a Quantum Computer:

- #1. A scalable physical system with well-characterized qubits.
- #2. The ability to initialize the state of the qubits to a simple fiducial state.
- #3. Long (relative) decoherence times, much longer than the gate-operation time.
- #4. A universal set of quantum gates.
- #5. A qubit-specific measurement capability.

in the standard (circuit approach) to quantum information processing (QIP)

plus two criteria requiring the possibility to transmit information:

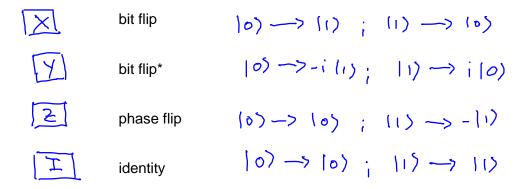
- #6. The ability to interconvert stationary and mobile (or flying) qubits.
- #7. The ability to faithfully transmit flying qubits between specified locations.

DiVincenzo, D., Quantum Computation, Science 270, 255 (1995)

2.4 Single Qubit Logic Gates

2.4.1 Quantum circuits for single qubit gate operations

operations on single qubits:



any single qubit operation can be represented as a rotation on a Bloch sphere

QSIT08.V02 Page 13

2.4.2 Pauli matrices

The action of the single qubit gates discussed before can be represented by Pauli matrices acting on the computational basis states:

exercise: calculate eigenvalues and eigenvectors of all Pauli matrices and represent them on the Bloch sphere

2.4.3 The Hadamard gate

a single qubit operation generating superposition states from the qubit computational basis states

matrix representation of Hadamard gate:

$$H = \frac{1}{\sqrt{2}} \left(\frac{1}{1-1} \right) = \frac{1}{\sqrt{2}} \left(X + Z \right) \qquad ; \quad H^{\dagger}H = I$$

exercise: write down the action of the Hadamard gate on the computational basis states of a qubit.