
QM postulate: The time evolution of a state |ψ> of a closed quantum system is described by the Schrödinger 
equation

general solution for a time independent Hamiltonian H:

2.5 Dynamics of Quantum Systems

2.5.1 The Schrödinger equation

Reminder: A closed quantum system is one which does not interact with any other system.

where H is the hermitian operator known as the Hamiltonian describing the closed system.

example: e.g. electron spin in a field

energy level diagram:
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interpretation of dynamics on the Bloch 
sphere:

this is a rotation around the equator of the Bloch sphere with 
Larmor precession frequency ω

Hamiltonian for spin 1/2 in a magnetic field:
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2.5.2 Rotation of qubit state vectors and rotation operators

when exponentiated the Pauli matrices give rise to rotation matrices around the three orthogonal axis in  3-
dimensional space.

If the Pauli matrices X, Y or Z are present in the Hamiltonian of a 
system they will give rise to rotations of the qubit state vector around 
the respective axis.

exercise: convince yourself that the operators Rx,y,z do perform rotations on the qubit state written in the Bloch 
sphere representation.
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preparation of a superposition state:

Xπ/2 pulse:

Yπ/2 pulse:

in fact such a pulse of chosen length and phase can prepare any single 
qubit state, i.e. any point on the Bloch sphere can be reached

2.5.3 Preparation of specific qubit states

initial state |0>:

prepare excited state by rotating around x or y axis:

Xπ pulse:

Yπ pulse:
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2.6 Quantum Measurement

Quantum measurement is done by having a closed quantum system interact in a controlled way with an 
external system from which the state of the quantum system under measurement can be recovered.

○ example to be discussed: dispersive measurement in cavity QED

QM postulate: quantum measurement is described by a set of operators {Mm} acting on the state space of 
the system. The probability p of a measurement result m occurring when the state ψ is measured is

the state of the system after the measurement is 

completeness: the sum over all measurement outcomes has to be unity

2.6.1 The quantum measurement postulate
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measurement operators:

measurement probabilities:

state after measurement:

measuring the state again after a first measurement yields the same state as the initial measurement with unit 
probability

2.6.2 Example: projective measurement of a qubit in state ψ in its computational basis
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One way to determine the state of a qubit is to measure the 
projection of its state vector along a given axis, say the z-axis.

On the Bloch sphere this corresponds to the following operation:

After a projective measurement is completed the qubit will be in either one 
of its computational basis states.

In a repeated measurement the projected state will be measured with 
certainty.

2.6.3 Interpretation of the Action of a Projective Measurement

Information content in a single qubit state

- infinite number of qubit states

- but single measurement reveals only 0 or 1 with probabilities |α|2 or |β|2

- measurement will collapse state vector on basis state
- to determine α and β an infinite number of measurements has to be made    

But if not measured the qubit contains 'hidden' information about α and β.
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2.7.1 Two Qubits

2 classical bits with states: 2 qubits with quantum states:

- 2n different states (here n=2)
- but only one is realized at any given time

2n complex coefficients describe quantum state

normalization condition

- 2n basis states (n=2)
- can be realized simultaneously 
- quantum parallelism

2.7 Multiple Qubits
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2.7.2 Composite quantum systems

QM postulate: The state space of a composite systems is the tensor product of the state spaces of the 
component physical systems. If the component systems have states ψi the composite system state is

example: 

exercise: Write down the state vector (matrix representation) of two qubits, i.e. the tensor product, in the 
computational basis. Write down the basis vectors of the composite system.

This is a product state of the individual systems.

there is no generalization of Bloch sphere picture to many qubits
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2.7.3 Information content in multiple qubits

- 2n complex coefficients describe the state of a composite quantum system with n qubits

- Imagine to have  500 qubits, then 2500 complex coefficients describe their state.

- How to store this state? 
○ 2500 is larger than the number of atoms in the universe. 
○ It is impossible in classical bits. 
○ This is also why it is hard to simulate quantum systems on classical computers.

- A quantum computer would be much more efficient than a classical computer at simulating quantum systems.

- Make use of the information that can be stored in qubits for quantum information processing!
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2.7.4 Entanglement

Definition: An entangled state of a composite system is a state that cannot be written as a product state of the 
component systems.

example: an entangled 2-qubit state (one of the Bell states)

What is special about this state? Try to write it as a product state!

It is not possible! This state is special, it is entangled!

Use this property as a resource in quantum information processing:
○ super dense coding
○ teleportation
○ error correction
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2.7.5 Measurement of a single qubit in an entangled state

measurement of first qubit:

post measurement state:

measurement of qubit two will then result with certainty in the same result:

The two measurement results are correlated!

○ Correlations in quantum systems can be stronger than correlations in classical systems. 
○ This can be generally proven using the Bell inequalities which will be discussed later. 
○ Make use of such correlations as a resource for information processing 

super dense coding, teleportation, error corrections
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