2.5 Dynamics of Quantum Systems

2.5.1 The Schrédinger equation

QM postulate: The time evolution of a state |y> of a closed quantum system is described by the Schrédinger
equation
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where H is the hermitian operator known as the Hamiltonian describing the closed system.

Reminder: A closed quantum system is one which does not interact with any other system.

general solution for a time independent Hamiltonian H:
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example: e.g. electron spin in a field
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Hamiltonian for spin 1/2 in a magnetic field: l«\

-)G%o&
\—-\‘C - V{f K lod ol ~ l\)(\\ )
I

o)) = 16) —> (W)= e = © o)

[ ce) au)~ﬁl$m>=e”ftu>
[¥(o)) - (io)+\|>>

-(Qt
=A?f/tho>+¢ h>)
interpretation of dynamics on the Bloch
sphere: . )
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L >/ this is a rotation around the equator of the Bloch sphere with
Larmor precession frequency o
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2.5.2 Rotation of qubit state vectors and rotation operators

when exponentiated the Pauli matrices give rise to rotation matrices around the three orthogonal axis in 3-

dimensional space.
S . . 6
( Ces z TV dtmg
~1 5w @ 7]
t Sy z oS =

-idX/,

L (0)= e

® . . 6
C0511~ tSv—,Z

P2
]

@

I - (082 ~ Sin, ~
(‘9591—\Sr..,,£>/ = = T =
2 z

© o <t e
ﬂcosz-i- - ISM:E% = o QIQ/L

If the Pauli matrices X, Y or Z are present in the Hamiltonian of a

system they will give rise to rotations of the qubit state vector around
the respective axis.

exercise: convince yourself that the operators Ry,y,, do perform rotations on the qubit state written in the Bloch
sphere representation.
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2.5.3 Preparation of specific qubit states

initial state |0>:
prepare excited state by rotating around X or y axis:
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Xz pulse:

Y= pulse: — .
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preparation of a superposition state:
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in fact such a pulse of chosen length and phase can prepare any single
qubit state, i.e. any point on the Bloch sphere can be reached
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2.6 Quantum Measurement

Quantum measurement is done by having a closed quantum system interact in a controlled way with an
external system from which the state of the quantum system under measurement can be recovered.

o example to be discussed: dispersive measurement in cavity QED

2.6.1 The quantum measurement postulate

QM postulate: quantum measurement is described by a set of operators {Mm} acting on the state space of
the system. The probability p of a measurement result m occurring when the state y is measured is
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the state of the system after the measurement is
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completeness: the sum over all measurement outcomes has to be unity
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2.6.2 Example: projective measurement of a qubit in state y in its computational basis

(W) = o (o) + L1

measurement operators: S e
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measurement probabilities:
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state after measurement:
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measuring the state again after a first measurement yields the same state as the initial measurement with unit

probability
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2.6.3 Interpretation of the Action of a Projective Measurement

One way to determine the state of a qubit is to measure the
projection of its state vector along a given axis, say the z-axis.

On the Bloch sphere this corresponds to the following operation:

After a projective measurement is completed the qubit will be in either one
of its computational basis states.

In a repeated measurement the projected state will be measured with
certainty.

Information content in a single qubit state

infinite number of qubit states

but single measurement reveals only 0 or 1 with probabilities |¢|? or |5)?
measurement will collapse state vector on basis state

to determine « and £ an infinite number of measurements has to be made

But if not measured the qubit contains 'hidden’ information about « and 4.
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2.7 Multiple Qubits

2.7.1 Two Qubits

2 classical bits with states: 2 qubits with quantum states:
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2n different states (here n=2) - 2" basis states (n=2)
but only one is realized at any given time - can be realized simultaneously

- quantum parallelism

2" complex coefficients describe quantum state

¥ 0 = oy, 1900 000 (O1) + 00, 110D 4oy, 1D

normalization condition Z (OL : iz =
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2.7.2 Composite quantum systems

QM postulate: The state space of a composite systems is the tensor product of the state spaces of the
component physical systems. If the component systems have states yi the composite system state is

(€)= ¥y el e oy )

This is a product state of the individual systems.
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exercise: Write down the state vector (matrix representation) of two qubits, i.e. the tensor product, in the

computational basis. Write down the basis vectors of the composite system.

there is no generalization of Bloch sphere picture to many qubits
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2.7.3 Information content in multiple qubits

2n complex coefficients describe the state of a composite quantum system with n qubits
Imagine to have 500 qubits, then 2590 complex coefficients describe their state.
How to store this state?
o 2500 s larger than the number of atoms in the universe.
o Itis impaossible in classical bits.
o This is also why it is hard to simulate quantum systems on classical computers.
A quantum computer would be much more efficient than a classical computer at simulating quantum systems.

Make use of the information that can be stored in qubits for quantum information processing!
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2.7.4 Entanglement

Definition: An entangled state of a composite system is a state that cannot be written as a product state of the

component systems.

example: an entangled 2-qubit state (one of the Bell states)
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What is special about this state? Try to write it as a product state!
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It is not possible! This state is special, it is entangled!

Use this property as a resource in quantum information processing:
o super dense coding
o teleportation
o error correction
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2.7.5 Measurement of a single qubit in an entangled state

H/)=ivz(foa2 1)

measurement of first qubit:
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measurement of qubit two will then result with certainty in the same result:
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The two measurement results are correlated!

o Correlations in quantum systems can be stronger than correlations in classical systems.
o This can be generally proven using the Bell inequalities which will be discussed later.
o Make use of such correlations as a resource for information processing

= super dense coding, teleportation, error corrections
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