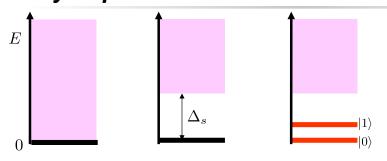
Why Superconductors?



normal metal

superconductor

How to make qubit?

- · síngle non-degenerate macroscopíc ground state
- · elimination of low-energy excitations

Superconducting materials (for electronics):

- Níobíum (Nb): $2\Delta/h = 725$ GHz, $T_c = 9.2$ K
- Alumínum (Al): $2\Delta/h = 100 \text{ GHz}$, $T_c = 1.2 \text{ K}$

Cooper pairs: bound electron pairs

are Bosons (S=0, L=0)

2 chunks of superconductors

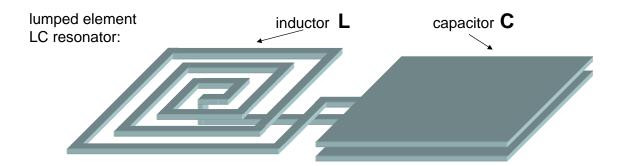
macroscopic wave function

eid:

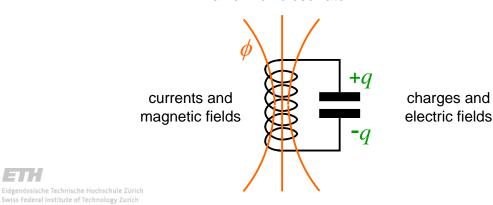
Cooper pair density n_i and global phase δ_i

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich phase quantization: $\delta = n 2 \pi$ flux quantization: $\phi = n \phi_0$

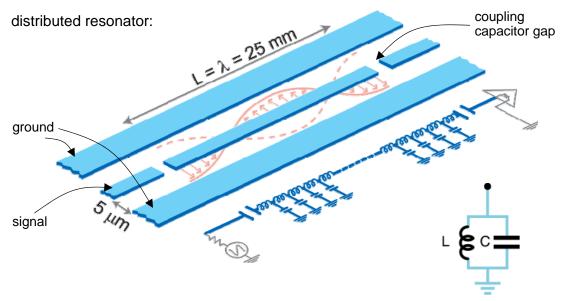
Can it be done?



a harmonic oscillator



Transmission Line Resonator



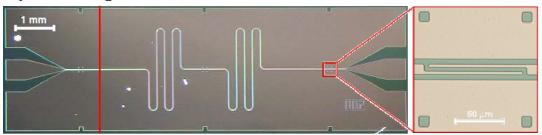
- coplanar waveguide resonator
- close to resonance: equivalent to lumped element LC resonator

M. Goppl *et al.*, Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics, *arXiv:0807.4094v1* (2008)

Transmission Line Resonator

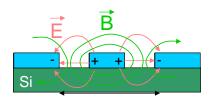
$H_r = \hbar \omega_r \left(a^{\dagger} a + \frac{1}{2} \right)$

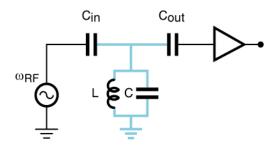
coplanar waveguide:



cross section:

measuring the resonator:

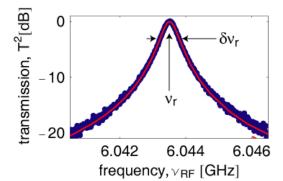


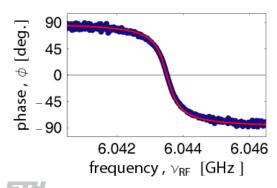


ETH

photon lifetime (quality factor) controlled by coupling $C_{
m in/out}$

Resonator Quality Factor and Photon Lifetime





resonance frequency:

$$\nu_r = 6.04 \, \mathrm{GHz}$$

quality factor:

$$Q = \frac{\nu_r}{\delta \nu_r} \approx 10^4$$

photon decay rate:

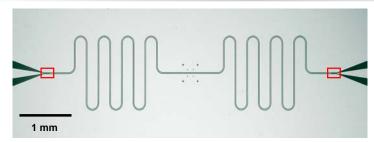
$$\frac{\kappa}{2\pi} = \frac{\nu_r}{Q} \approx 0.8 \, \text{MHz}$$

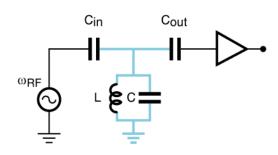
photon lifetime:

$$T_{\kappa} = 1/\kappa \approx 200\,\mathrm{ns}$$

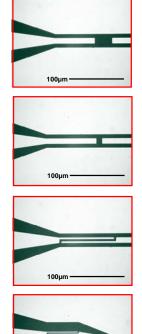
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Controlling the Photon Life Time

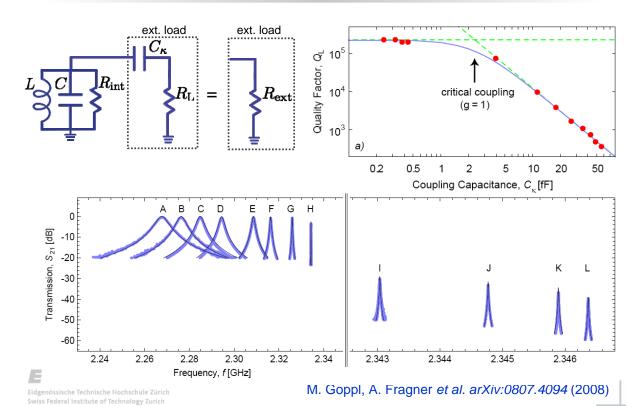




photon lifetime (quality factor) controlled by coupling capacitor C_{in/out}



Coupling Dependent Quality Factor



How to prove that the h.o. is quantum?

measure:

- resonance frequency
- average charge (momentum)
- average flux (position)

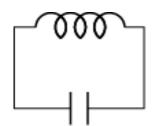
all averaged quantities are identical for a purely harmonic oscillator in the classical or quantum regime

solution:

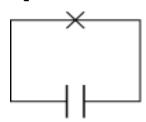
make oscillator non linear in a controllable way

Superconducting Nonlinear Oscillators

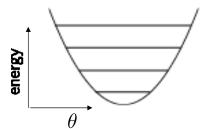
LC resonator

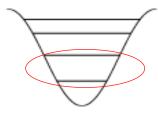


Josephson junction resonator Josephson junction = nonlinear inductor



anharmonicity \rightarrow effective two-level system



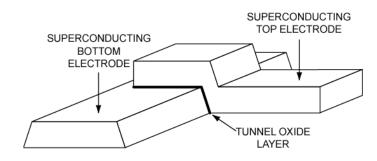


solution to problem 1

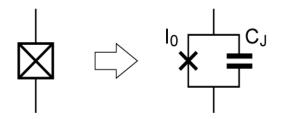
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

A Low-Loss Nonlinear Element

a (superconducting) Josephson junction



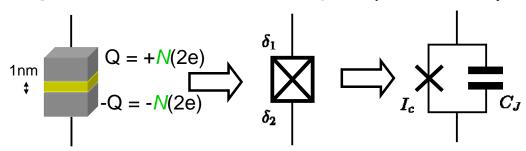
- superconductors: Nb, Al
- tunnel barrier: AlO_x



- critical current I_c
- ullet junction capacitance C_J
- ullet high internal resistance R_J

Josephson Tunnel Junction

the only non-linear LC resonator with no dissipation (BCS, $k_B T \ll \Delta$)



tunnel junction parameters:

 $I_0 = I_c \sin \delta$ Josephson relations:

$$ullet$$
 critical current I_c

 $V = \phi_0 \frac{\partial \delta}{\partial t}$

$$ullet$$
 junction capacitance C_J

flux quantum:
$$\phi_0 = \frac{h}{2e}$$

$$ullet$$
 high internal resistance R_J

phase difference:
$$\delta = \delta_2 - \delta_1$$

derivation of Josephson effect, see e.g.: chap. 21 in R. A. Feynman: Quantum mechanics, The Feynman Lectures on Physics. Vol. 3 (Addison-Wesley, 1965) Swiss Federal Institute of Technology Zurich

The Josephson junction as a non-linear inductor

induction law:

Josephson effect: dc-Josephson equation

$$\frac{\partial I}{\partial t} = I_{c} \cos \delta \frac{\partial \delta}{\partial t}$$

ac-Josephson equation
$$V = \frac{\phi_0}{2\pi} \frac{2f}{2t} = \frac{\phi_0}{27I_c} \frac{1}{\cos \delta} \frac{2I}{2t}$$

Josephson inductance

specífic Josephson Inductance

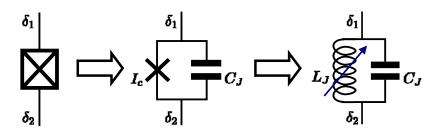
nonlinearity

A typical characteristic Josephson inductance for a tunnel junction with $I_c = 100 \text{ nA is } L_{10} \sim 3 \text{ nH}.$

review: M. H. Devoret et al.,

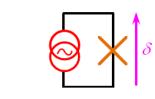
A Non-Linear Tunable Inductor w/o Dissipation

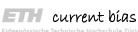
the Josephson junction as a circuit element:

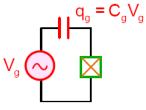


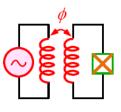
How to Make Use of the Josephson Junction in Qubits?

different bias (control) circuits:







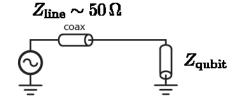


flux bías

Coupling to the Electromagnetic Environment

strong coupling to environment (bias wires):

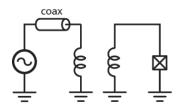
decoherence from energy relaxation

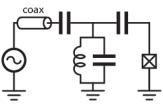


decoupling using impedance transformers:

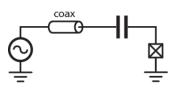
control decoherence by circuit design

solution to problem 2





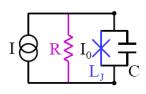
using a resonant circuit



using non-resonant impedance transformers

Current Biased Phase Qubit

The bias current I distributes into a Josephson current through an ideal Josephson junction with critical current I_c , through a resistor R and into a displacement current over the capacitor C.



$$I_{b} = I_{s} + I_{R} + I_{C}$$

$$= I_{c} \sin \delta + \frac{V}{R} + CV$$

use Josephson equations:

W.C. Stewart, Appl. Phys. Lett. **2**, 277, (1968) D.E. McCumber, J. Appl. Phys. **39**, 3 113 (1968)

looks like equation of motion for a particle with mass m and coordinate δ in an external

potentíal u:

partícle mass:

external potentíal:

$$M(\delta) = \frac{I_c \phi_0}{2\pi} \left(- \frac{I_4}{I_c} - \cos \delta \right)$$

Phase particle in a potential well

$$U(\delta) = \frac{I_{\epsilon}\phi_{0}}{2\pi} \left(-\frac{I_{6}}{I_{\epsilon}}\delta - \cos\delta\right)$$

cosíne potentíal for $l_b = o$:

 $E_{z} = \frac{120}{2\pi}$

'tilted washboard' potential for $l_b \neq o$:

potential barrier:

oscillation frequency:

with: $V = I_b/I_c$; $W_p = \sqrt{\frac{2\pi I_c}{\phi_o C}}$

