Quantum Information Processing with Semiconductor Quantum Dots

slides courtesy of Lieven Vandersypen, TU Delft

Can we access the quantum world

at the level of single-particles? in a solid state environment?

Imamoglu et al, PRL 1999

Loss & DiVincenzo PRA 1998

Electrically controlled and measured quantum dots

A small semiconducting (or metallic) island where electrons are confined, giving a discrete level spectrum

- Coupled via tunnel barriers to source and drain reservoirs
- Coupled capacitively to gate electrode, to control # of electrons

Examples of quantum dots

Electrostatically defined quantum dots

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Initialization 1-electron, low *T*, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$

Read-outconvert spin to chargethen measure charge

ESR pulsed microwave magnetic field $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$

SWAP exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$

Spin qubits in quantum dots

1-electron, low T, high B_0

 $H_0 \sim \Sigma \omega_i \sigma_{zi}$

convert spin to charge

then measure charge

exchange interaction

long relaxation time T_1

long coherence time T_2

 $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$

pulsed microwave magnetic field

 $H_{\rm RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Initialization

Read-out

ESR

SWAP

Coherence

↓ …		
	Ez = 5 дµвВ 2	27
↑	<u> </u>	-

Transport through quantum dot -Coulomb blockade

Few-electron double dot design

Few-electron double dot Measured via QPC

J.M. Elzerman et al., PRB 67, R161308 (2003)

Single electron tunneling through two dots in series

Few-electron double dot Transport through dots

< 1 pA

2 pA

Energy level spectroscopy at *B* = 0

Single electron Zeeman splitting in B_{//}

Initialization of a single electron spin

Method 1:
spin-selective
tunneling \longrightarrow \longrightarrow Method 2:
relaxation to
ground state \longrightarrow \longrightarrow

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Initialization 1-electron, low *T*, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$

Read-out	convert spin to charge
	then measure charge

ESR pulsed microwave magnetic field $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$

SWAP exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$

Spin read-out principle: convert spin to charge

Observation of individual tunnel events

- *V_{sD}* = 1 mV
- *I_{QPC}*~ 30 nA
- ∆*I_{QPC}* ~ 0.3 nA
- Shortest steps ~ 8 µs

Vandersypen *et al*, APL 85, 4394, 2004 Also: Schlesser *et al*, 2004

Pulse-induced tunneling

Spin read-out procedure

Inspiration: Fujisawa et al., Nature 419, 279, 2002

Spin read-out results

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Initialization	1-electron, low T , high B_0
	$H_0 \sim \Sigma \omega_i \sigma_{zi}$

Read-out	convert spin to charge
	then measure charge

ESR	pulsed microwave magnetic field
	$H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$

SWAP exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$

ESR detection in a single dot

ESR lifts Coulomb blockade

Engel & Loss, PRL 2001

Double dot in spin blockade for ESR detection

Advantage: interdot transition instead of dot-lead transition

- Insensitive to temperature
 - \Rightarrow can use *B* < 100 mT, *f* < 500 MHz
- Insensitive to electric fields

ESR flips spin, lifts spin blockade

Combine Engel & Loss (PRL 2001) ESR detection with Ono & Tarucha (Science 2002) spin blockade

ESR device design

Gates ~ 30 nm thick gold Dielectric ~ 100nm calixerene Stripline ~ 400nm thick gold

Expected AC current ~ 1mA Expected AC field ~ 1mT Maximize B_1 , minimize E_1

Coherent manipulation: pulse scheme

- Initialization in mixture of $\uparrow\uparrow$ and $\downarrow\downarrow$
- Measurement switched off (by pulsing to Coulomb blockade) during manipulation
- Read-out: projection on $\{\uparrow\uparrow,\downarrow\downarrow\}$ vs. $\{\uparrow\downarrow,\downarrow\uparrow\}$ basis

Coherent rotations of single electron spin!

Koppens et al. Nature 2006

- Oscillations visible up to 1µs
- Decay non exponential \rightarrow slow nuclear dynamics (non-Markovian bath)
- Agreement with simple Hamiltonian

taking into account different resonance conditions both dots

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Initialization 1-electron, low *T*, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$

Read-outconvert spin to chargethen measure charge

ESR pulsed microwave magnetic field $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$

SWAP	exchange interaction
	$H_{J} \sim \Sigma J_{ij}(t) \sigma_{i} \cdot \sigma_{j}$

Coherent exchange of two spins

Petta et al., Science 2005

- free evolution under exchange Hamiltonian
- swap^{1/2} in as little as 180 ps
- three oscillations visible, independent of J

Spin qubits in quantum dots - present status

