with experiment, and although the polarizabilities of the (relativistic) IBr states are difficult to calculate (30), DSC will always be possible if there are differential polarizabilities between states.

We have shown that the nonresonant dynamic Stark effect can be used to dynamically alter a potential energy barrier in a photochemical reaction, promoting the formation of a given product. Variants of DSC that incorporate Raman pumping will be applicable to ground-state reactions. Pulse-shaping methods from the quantum control toolbox will also prove useful. For example, implementing DSC with adaptive-feedback techniques will lead to the design of custom-shaped Stark-control laser pulses. As well, it will be possible to use interference effects in DSC to alter, for example, excited-state lifetimes (29).

The frequency independence, the avoidance of excited state chemistry, and the universal applicability of the nonresonant dynamic Stark effect should prove important for scaling DSC to larger and more complex systems.

References and Notes

2. S. A. Rice, M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).

22. The 1-Hz laser system consists of a Ti:Sapphire oscillator pumping a regenerative amplifier. The 900-nm output pumps a pair of optical parametric amplifiers (OPA). The idler output from OPA1 (1730 nm) was used for the control pulse, whereas the signal (1485 nm) was mixed with residual 800-nm light to produce the 520-nm pump wavelength. The signal beam from OPA2 (1218 nm) was doubled and then doubled again to make the 304.5-nm ultraviolet (UV) probe. The REMPI probe is bandwidth-narrowed by use of long doubling crystals to ensure high selectivity. Telescopes were used to expand the three beams to varying diameters such that the focal-spot size ratios at the interaction region were UV:visible=IR=1:1:5.2. Careful co-calibration then assured that the IR field was sampled at a uniform intensity.

31. We thank P. Corkum and M. Shapiro for many useful discussions and R. Lausten, R. Bhadraw, and D. Rayner for their assistance with the experiment.

10 July 2006; accepted 23 August 2006.

10.1126/science.1132289

Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond

L. Childress,1* M. V. Gurudev Dutt,1* J. M. Taylor,1 A. S. Zibrov,1 F. Jelezko,2 J. Wrachtrup,2 P. R. Hemmer,3 M. D. Lukin†

Understanding and controlling the complex environment of solid-state quantum bits is a central challenge in spintronics and quantum information science. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond was used to gain insight into its local environment. We show that this environment is effectively separated into a set of individual proximal 13C nuclear spins, which are coupled coherently to the electron spin, and the remainder of the 13C nuclear spins, which cause the loss of coherence. The proximal nuclear spins can be addressed and coupled individually because of quantum back-action from the electron, which modifies their energy levels and magnetic moments, effectively distinguishing them from the rest of the nuclei. These results open the door to coherent manipulation of individual isolated nuclear spins in a solid-state environment even at room temperature.

The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering (1). Solid-state quantum systems such as electronic spins (2–10), nuclear spins (11, 12), and superconducting islands (13) are among the most promising candidates for realizing qubits. However, in contrast to isolated atomic systems (14), these solid-state qubits couple to a complex environment, which often leads to rapid loss of coherence and, in general, is difficult to understand (15–19).

We used spin–echo spectroscopy on a single-electron solid-state qubit to gain insight into its local environment. We investigated a single nitrogen-vacancy (NV) center in a high-purity diamond sample and showed that its electron spin coherence properties are determined by 13C nuclear spins. Most importantly, we demonstrated that the electron spin couples coherently to individual proximal 13C spins. By selecting an NV center with a desired nearby 13C nucleus and adjusting the external magnetic field, we could effectively control the coupled electron-nuclear spin system. Our results show that it is possible to coherently address individual isolated nuclei in the solid state and manipulate them via a nearby electron spin. Because of the long coherence times of isolated nuclear spins (20), this is an important element of many solid-state quantum information approaches from quantum computing (11, 12) to quantum repeaters (21, 22).

Spin echo is widely used in bulk electron spin resonance (ESR) experiments to study interactions and to determine the structure of complex molecules (23). Recently, local contact interactions were observed between single-NV electronic spins and the nuclear spins associated with the host nitrogen and the nearest-neighbor carbon atoms (3, 24). In the latter case, coherent dynamics of electron and nuclear spins were observed (3). We show that coherent coupling extends to separated isolated nuclei, which nominally constitute the electron environment and couple weakly to the electron spin.

The NV center stands out among solid-state systems because its electronic spin can be efficiently prepared, manipulated, and measured with optical and microwave excitation (2). The electronic ground state of the NV center is a spin triplet that exhibits a 2.87-GHz zero-field splitting, defining the z axis of the electron spin (Fig. 1A). Application of a small magnetic field splits the magnetic sublevels m = ±1, allowing selective microwave excitation of a single spin transition.

Our observations can be understood by considering how the NV electron spin interacts...
with a proximal spin-$\frac{1}{2}$ nucleus in the diamond lattice. If the electron spin is in the state with zero magnetic moment ($m_z = 0$), it does not interact with the nuclear spin, which is thereby free to precess under the influence of a small magnetic field applied externally. However, if the electron is in either of the $m_z = \pm 1$ states, then it generates a local magnetic field that inhibits the free precession of nearby nuclei (25, 26). Hence, the nuclear precession is conditional on the state of the electron. In particular, if the electron spin is prepared in a superposition state, then it becomes entangled with the nuclear spins at a rate determined by the external magnetic field, i.e., the Larmor frequency. In practice, the diamond lattice contains a large number of randomly placed nuclear spins. The electron becomes entangled with all of them and thus decoheres on the time scale of the Larmor period. Coherent coupling to individual proximal nuclear spins is nevertheless possible, because the electron spin effectively enhances their magnetic susceptibilities and hence their precession frequency.

In our experiments, single NV centers were isolated and addressed at room temperature by using optical scanning confocal microscopy (Fig. 1B) with excitation at 532 nm and fluorescence detection over the range from 650 to 800 nm. Each circled spot is a single NV center, which was verified by photon correlation measurements (inset). We investigated over 20 individual centers in detail, and where relevant we indicate which center we observed. The 532-nm excitation polarizes the spin triplet into the $m_z = 0$ state on the time scale of a few microseconds. After microwave manipulation of the spin, we detected the remaining population in the $m_z = 0$ state by again applying the excitation laser. Just after the 532-nm light is applied, the $m_z = 0$ state fluoresces more strongly than the $m_z = \pm 1$ states, allowing measurement of the spin (Fig. 1C) (27).

Oscillations in fluorescence occur as a function of the duration of a microwave pulse resonant with the $m_z = 0$ to $m_z = 1$ transition (2) (Fig. 1D). These Rabi nutations should correspond to complete population transfer within the two-state system. Fluorescence data were thus normalized with the $0\rightarrow 2$ transition (25, 26), where $0 \leftrightarrow 2\leftrightarrow 0$ probability, p, where $p = 1$ and $p = 0$ correspond to the maximum and the minimum fluorescence, respectively, in a fit to Rabi oscillations observed under the same conditions.

To probe coherence properties of single electron spins, we make use of Ramsey spectroscopy and spin echo techniques (28). The free electron spin precession [Ramsey signal (29)] dephases on a fast time scale, $T_2^* = 1.7 \pm 0.2 \mu$s (Fig. 1E). Moreover, the signal exhibits a complex oscillation pattern caused by level shifts from the host 14N nucleus and other nearby spins (27). These frequency shifts can be eliminated by using a spin-echo (or Hahn echo) technique (29). It consists of the sequence $\pi/2 - \tau - \pi - \tau - \pi/2$, where π represents a microwave pulse of sufficient duration to flip the electron spin from $m_z = 0$ to $m_z = 1$ and τ and τ' are durations of free precession intervals. When the two wait times are equal, $\tau = \tau'$, this sequence decouples the spin from an environment that changes slowly compared with τ (Fig. 2A).

Decay of a typical Hahn echo signal (Fig. 2B) yielded a much longer coherence time, $T_2* \approx 13 \pm 0.5 \mu s \gg T_2^*/2$, thus indicating a long correlation (memory) time associated with the electron spin environment.

Spin-echo spectroscopy provides a useful tool for understanding this environment: By observing the spin-echo signal under varying conditions, we can indirectly determine the response of the environment and, from this, glean details about the environment itself. In particular, we observe that the echo signal depends on the magnetic field. As the magnetic field is increased, the initial decay of the spin echo signal occurs faster and faster. However, the signal revives at longer times, when τ equals T_2* (30). Figure 2C shows a typical spin-echo signal (center B) in moderate magnetic field as a function of time (inset). The initial collapse of the signal is followed by periodic revivals extending out to $2\tau \sim 240 \mu$s. We find that the revival rate, $1/T_2*$ precisely matches the Larmor precession frequency for 13C nuclear spins of 1.071 kHz/G (Fig. 3A). This result indicates that the dominant environment of the NV electron spin is a nuclear spin bath formed by the spin-$1/2$ 13C isotope, which exists in 1.1% abundance in the otherwise spinless 12C diamond lattice (Fig. 3B). The 13C precession induced periodic decorrelation and rephasing of the nuclear spin bath, which led to collapses and revivals of the electron spin-echo signal (Fig. 2C).

Every NV center studied exhibited spin-echo collapse and revival on long time scales, but many also showed more complicated evolution on short time scales. As an example, the spin-echo signal from NV center E (Fig. 4A) showed oscilations with slow and fast components at ~ 0.6 MHz and ~ 9 MHz, respectively. The fast component (referred to as the modulation frequency) was relatively insensitive to the magnetic field (Fig. 4B), but the slow component (envelope frequency) varied dramatically with the magnetic field amplitude and orientation (Fig. 4, C and D). These observations indicate that the electron spin gets periodically entangled and disentangled with an isolated system until the spin echo finally collapses from interactions with the precessing bulk spin bath. Although the data are not shown, some NV centers, for example NV C, exhibited several envelope and modulation...
frequencies, indicating that the electron spin interacts coherently with multiple 13C nuclei. Other centers, for example NV F, showed no evidence of proximal 13C spins.

To provide a quantitative explanation for these results, we first considered the spin-echo signal arising from a single 13C nucleus located a distance r in the direction \mathbf{n} from the NV spin. This 13C spin couples to the electron spin via the hyperfine interaction (28, 31):

$$V^{(j)} = -\mu_e \mu_n \frac{8\pi |\Psi_e(r)|^2}{3} \mathbf{S} \cdot \mathbf{I}^{(j)} + \left\langle \frac{\mu_e \mu_n}{r} \left\{ \mathbf{S} \cdot \mathbf{I}^{(j)} - 3[\mathbf{n} \cdot \mathbf{S}][\mathbf{n} \cdot \mathbf{I}^{(j)}] \right\} \right\rangle$$ (1)

where μ_e and μ_n are the electron and nuclear magnetic moments, respectively, $|\Psi_e(r)|^2$ is the electron spin density at the site of the nuclear spin, and angle brackets denote an average over the electron wavefunction, $\Psi_e(r)$. The essence of this Hamiltonian, which can be represented as $V^{(j)} = \mathbf{B}^{(j)} \cdot \mathbf{I}^{(j)}$, is that the nuclear spin experiences an effective magnetic field, $\mathbf{B}^{(j)}$, that depends on the electron spin state m_s. This electron spin state–dependent magnetic field leads to conditional evolution of the nuclear spin, thereby entangling the two spins. Because of the spatial dependence of the hyperfine interaction, these effects decrease rapidly with distance from the NV center, making proximal nuclei stand out from the remainder of the spin bath.

The hyperfine interaction between the electron spin and a single nuclear spin has a dramatic effect on the spin-echo signal. After the initial $\pi/2$ pulse in the spin-echo sequence, the electron spin state $(m_s = 0) + m_s = 1)/\sqrt{2}$ becomes entangled with the nuclear spin state at a rate determined by $\mathbf{B}^{(j)}_0$ and $\mathbf{B}^{(j)}_0$. As the electron spin becomes entangled with the nuclear spin, the spin-echo signal diminishes; when it gets disentangled, the signal revives. The resulting spin-echo signal thus exhibits periodic reductions in amplitude, with modulation frequencies ω_{nms} associated with each spin-dependent field $\mathbf{B}^{(j)}_{nms}$. By considering the unitary evolution associated with the dipole Hamiltonian [see, e.g., (26) for derivation], we obtained a simple expression for the spin echo signal, $p_j = (S_j + 1)/2$, with pseudospin S_j given by

$$S_j(\tau) = 1 - \frac{2|\mathbf{B}_0^{(j)}| \times |\mathbf{B}_0^{(j)}|^2}{|\mathbf{B}_0^{(j)}|^4} \times \sin^2 \left(\omega_{0,1} \tau/2 \right) \sin^2 \left(\omega_{0,1} \tau/2 \right)$$ (2)

Because the electron spin dipole field is stronger for $m_s = 1$, we associated $\omega_{0,1}$ with the fast modulation frequency and $\omega_{0,0}$ with the slower envelope frequency. Furthermore, we included multiple 13C nuclei in our description by taking a sum over the dipole interactions, $V = \sum_j V^{(j)}$, the corresponding unitary evolution yields the echo signal $p = (S + 1)/2$ with $S = \prod_j S_j$.

We began with a simple treatment, which neglected the terms proportional to S_j and S_j, because they are suppressed by the large electron-spin splitting $\Delta \approx 2.87$ GHz [the so-called secular approximation (23)]. In this model (Fig. 3C), the $m_s = 1$ nuclear-spin states have a fixed hyperfine splitting $\omega_{0,1} \approx \mu \mu_e / (1/3r^3) + 8|\Psi_e(r)|^2/3$, whereas the degenerate $m_s = 0$ nuclear-spin states can precess in a small applied magnetic field at the bare 13C Larmor frequency $\omega_{L} = \omega_{0,0}$. When we included many nuclear spins in the echo signal, the fast echo modulations $\omega_{0,1}$ interfered with each other, causing initial decay of the signal as $\exp(-t^2r_0^2)$. However, when $t = t' = 2\pi/\omega_{L}$, S_j equaled 1.
yielding the modulation frequency and thus augmenting their magnetic moment. However, direct comparison to the microscopic model depends sensitively on the details of the electronic wave function because of both the isotropic contact contribution. For a properly oriented magnetic field, we were able to estimate the six coupling parameters that describe the interaction with the nearest 13C spin for each center, but they all exceed the bare 13C Larmor frequency. In fact, these fits yield an estimate of the anisotropic dipolar contribution present.

Beyond providing a detailed insight into the mesoscopic environment of the spin qubit, our observations demonstrate a previously unknown mechanism for selective addressing and manipulation of single, isolated nuclear spins, even at room temperature. For example, such nuclear spins could be used as a resource for long-term storage of quantum information. They can be effectively manipulated via nearby electronic spins and potentially coupled together to explore a variety of proposed quantum information systems.

References and Notes
7. X. Li et al., Science 301, 809 (2003).
10. M. Atature et al., Science 312, 551 (2006); published online 5 April 2006 (10.1126/science.1126074).
Rapid Early Development of Circumarctic Peatlands and Atmospheric CH\textsubscript{4} and CO\textsubscript{2} Variations

Glen M. MacDonald,1,2* David W. Beilman,1 Konstantine V. Kremenetski,1,3 Yongwei Sheng,4 Laurence C. Smith,1 Andrei A. Velichko

An analysis of 1516 radiocarbon dates demonstrates that the development of the current circumarctic peatlands began ~16.5 thousand years ago (ka) and expanded explosively between 12 and 8 ka in concert with high summer insolation and increasing temperatures. Their rapid development contributed to the sustained peak in CH\textsubscript{4} and modest decline of CO\textsubscript{2} during the early Holocene and likely contributed to CH\textsubscript{4} and CO\textsubscript{2} fluctuations during earlier interglacial and interstadial transitions. Given the decreased tempo of peatland initiation in the late Holocene and the transition of many from fens (which generated high levels of CH\textsubscript{4}) to ombrotrophic bogs, a neoglacial expansion of northern peatlands cannot explain the increase in atmospheric CH\textsubscript{4} that occurred after 6 ka.

Modern northern peatlands cover about 4 million km2 across Eurasia and North America and represent the biggest wetland complex in the world (Fig. 1). Today, these peatlands are thought to store 180

CH\textsubscript{4} peak that occurred 11 to 8 ka (4, 9). On the basis of the assumed late-Holocene development, it has been suggested that northern peatlands played little role in the declining atmospheric CO\textsubscript{2}, which has also been observed during the period from 11 to 8 ka (5). Others argue that the development of the northern peatland complex contributed substantially to the early-Holocene CH\textsubscript{4} increase and simultaneously decreased atmospheric CO\textsubscript{2} through carbon sequestration in northern soils (6–8).

Resolving the debate on the potential role of the northern peatlands in early postglacial CH\textsubscript{4} variations has become critical since the recent analysis of the deuterium and carbon isotopic composition of CH\textsubscript{4} (\delta\textsubscript{D}CH\textsubscript{4} and \delta\textsubscript{13}CCH\textsubscript{4}) from Greenland ice samples, which suggested that the destabilization of marine clathrates is an unlikely explanation for the BA or early-Holocene CH\textsubscript{4} increases (10, 11). In view of this evidence, it has been argued that the sustained high levels of CH\textsubscript{4} that developed at the close of the YD in part require a persistent terrestrial source linked to the warming climate at that time (11).

Holocene concentrations of atmospheric CH\textsubscript{4} reached a minimum of ~600 ppbv at 6 ka and then increased again over the late Holocene to values of about 695 ppbv just before the industrial revolution (3). This late-Holocene increase has been variously attributed either to expansion of northern wetlands due to neoglacial climatic cooling after the Holocene thermal maximum (4) or to the product of expanding anthropogenic activity (particularly the expansion of rice- and cattle-based agrarian societies) in the mid- to late Holocene (12). However, recently collected CH\textsubscript{4} data from Antarctic ice cores reveal that the mid- to late-Holocene increase is not unique. A similar late-interglacial increase in Pleistocene atmospheric CH\textsubscript{4} occurred ~400 ka during Marine Isotope Stage 11 (MIS11), which clearly cannot reflect anthropogenic sources and has been ascribed instead to natural factors, including expansion of northern wetlands (13).

To address the hypothesis that northern peatland development could have contributed to the late-Pleistocene and Holocene variations in atmospheric CH\textsubscript{4} and CO\textsubscript{2} outlined above, we collated 1516 basal radiocarbon dates for peat initiation from wetlands throughout high-latitude Europe, Asia, and North America from a wide variety of sources (14). Some areas, such as Fennoscandia, have numerous basal dates for a small geographic area, whereas other very large areas such as central and eastern Siberia have a limited number of dates (Fig. 1). Therefore, we analyzed the compiled data set by raw number of initiation dates, and we also divided the Northern Hemisphere into grids of 2° latitude by 2° longitude and assigned a value for peatland initiation based on the oldest basal radiocarbon date in each cell (Fig. 1).

The lack of basal dates older than about 16.5 ka suggests that there was no extensive peatland complex in the northern circumpolar region during the LGM (Fig. 2). This finding is corroborated by palynological data that indicate a paucity of Sphagnum (peat moss) spores from deposits of this age (15). Before 16.5 ka, much of the North American and European arctic and subarctic were still covered in ice, and it is likely that the large ice-free areas of Siberia and Beringia were too cold and dry (16) to promote extensive peatland development. This absence of any significant northern peatland complex during the LGM is consistent with the depressed CH\textsubscript{4} levels and the relatively low proportion of northern CH\textsubscript{4} sources observed in ice-core records (Fig. 3).

In concert with increasing summer insolation and northern high-latitude temperatures, the current northern peatland complex began developing in ice-free portions of North America and Asia between 16.5 and 14 ka and initiating widely on all three northern continents after 14 ka (Figs. 1 and 2). These results dispel the earlier assertion that peatland development in

*Department of Geography, 2Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1524, USA. 3Russian Academy of Sciences, Moscow 109017, Russia. 4To whom correspondence should be addressed. E-mail: macdonal@geog.ucla.edu