Implementing gates in quantum dot spin qubits

Bruno Schuler and Marco Gähler 29.11.2010, ETH Zürich

Source:

Petta, JR; Johnson, AC; Taylor, JM; et al.
Coherent manipulation of coupled electron spins in semiconductor quantum dots.
Science 309, 2180 (2005)

David P. DiVincenzo Double Quantum Dot as a Quantum Bit. Science 309, 2173 (2005);

Outline

- Two electron spin qubit
- Device
- Energy levels
- Manipulation of states
 - Dephasing
 - Rabi oscillations
 - Spin echo technique

motivation

Semiconductor quantum dots:

- Engineered artificial atoms
- Long lifetime of the quantum states (T₁)
 compared to pulse frequency
- Short coherence lifetime T₂
 - -> spin echo

Two electron spin qubit

- Double-well potential = H₂ molecule
- ground state = Singlet excited state = Triplet
- Difference: Spin coupled to 10⁶ spins of host crystal nuclei

Bloch sphere representation

 $|T\rangle$

Device

- Quantum Dots (QDs) confined in 2DEG (GaAs/AlGaAs interface) with split gate technique
- The voltage V_L , V_R controls charge in QDs
- V_T tunes interdot tunneling
- Single electrons can be detected by measuring the conductance gs over the quantum point contact (QPC)

Charge state depent QPC conductance

- (m,n) = electrons in (left, right) dot
- Additional electrons reduce the conductance discretely
- QPC is more sensitive to the right dot
 - -> difference between (0,2) and (1,1)
- V_i also affects right dot
 - -> honeycomb shape

Charge state depent QPC conductance

- (m,n) = electrons in (left, right) dot
- Additional electrons reduce the conductance discretely
- QPC is more sensitive to the right dot
 - -> difference between (0,2) and (1,1)
- V_i also affects right dot
 - -> honeycomb shape

Charge state depent QPC conductance

- (m,n) = electrons in (left, right) dot
- Additional electrons reduce the conductance discretely

- QPC is more sensitive to the right dot
 - -> difference between (0,2) and (1,1)
- V_i also affects right dot
 - -> honeycomb shape

Energy depending on detuning

- The triplet states (m = -1,0,+1) are split off by a 100mT external magnetic field
- Detuning parameter ε ~ (V_R-V_L)
- Only states with similar energies can mix (consider $S=T_0$, $S=T_1$)

Gerneral method for propagation and readout

- Initialize in (0,2)S
- Pulse transferes (0,2)S into the spatially separated (1,1)S state
- (1,1)S and (1,1)T form a two level system
- The (1,1)S state is manipulated
- The state is projected back onto (0,2)S if the final state was (1,1)S and measured with the QPC. Tripplet state is blocked

Manipulation of states, dephasing

- Short voltage pulse to large detuning suppresses exchange interaction of separated spins
- Due to different hyperfine interactions caused by the GaAs nuclei in the QDs, different rotations occur
- -> dephasing

Limits of the coherence

- Weak interaction with ~10⁶ other GaAs atoms
- Fluctuations of the magnetic field of 1-5mT, chaning at arround 10µs

Experimental results of dephasing

- Correlation of the states decays gaussian
- With B-field of 100mT, S state can only mix with the T_0 state and thus S has a higher probability than with B=0mT

SWAP

- The four states can be maped on the bloch sphere
- At an energy of slightly below ε the state rotates between the states I > and I >
- After a time $\tau_{\rm E}$ the state changes from I > to I > or vice versa, this is called \sqrt{SWAP}

- By a slow decrease of ε the state gets initialized in the |↑↓>
 state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of |↑↓>, |↓↑>
- The slow increase of ε leads either to (1,1)S or (1,1)T state

- By a slow decrease of ε the state gets initialized in the |↑↓>
 state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of |↑↓>, |↓↑>
- The slow increase of ε leads either to (1,1)S or (1,1)T state

- By a slow decrease of ε the state gets initialized in the |↑↓>
 state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of |↑↓>, |↓↑>
- The slow increase of ε leads either to (1,1)S or (1,1)T state

- By a slow decrease of ε the state gets initialized in the |↑↓>
 state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of |↑↓>, |↓↑>
- The slow increase of ε leads either to (1,1)S or (1,1)T state

- By a slow decrease of ε the state gets initialized in the |↑↓>
 state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of |↑↓>, |↓↑>
- The slow increase of ε leads either to (1,1)S or (1,1)T state

Experimental results of Rabi oscillations

- Rotations about the x-axis leads to oscillations on the singlet probability
- The decaytime is proportional to the frequency
- Small detuning leads to higher exchange and therefore to faster rotations

Spin echos

- Idea: reduce the dephasing by using rabi oscillations
- rotation by $(2n+1)=\pi$ about z-axis
- Let system evolve for the same time $\tau_{\rm S} = \tau_{\rm S'}$
- dephasing is interfering destructively

Conclusion

- Coherent control of a logical qubit based on two-electron spin states
- Electrostatic gate control only
- Rabi oscillations and SWAP operation were demonstrated
- Spin echo technique reduces the decoherence caused by B-field fluctuations
 - -> enhanced coherent spin-lifetime of 1µs

