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Manipulation of states
* Dephasing

* Rabi oscillations
e Spin echo technique



motivation

Semiconductor quantum dots:
* Engineered artificial atoms

- Long lifetime of the quantum states (T )
compared to pulse frequency

o Short coherence lifetime T2
-> spin echo



Two electron spin gubit

H2 molecule
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Ground state of H atom

- Double-well potential = H molecule

e ground state = Singlet
excited state = Triplet

« Difference: Spin coupled to 10° spins of host crystal nuclei



Bloch sphere representation
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Device

Quantum Dots (QDs) confinedin A =—————————————1um
2DEG (GaAs/AlGaAs interface)
with split gate technique

The voltage V , V_ controls charge
In QDs

V_tunes interdot tunneling

Single electrons can be detected
by measuring the conductance gs
over the quantum point contact

(QPC)




Charge state depent QPC conductance

e (m,n) = electrons in (left, right) dot

» Additional electrons reduce the 'fa
conductance discretely E ’
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-> honeycomb shape
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Energy depending on detuning

* The triplet states (m = -1,0,+1) are split off by a 100mT external
magnetic field

- Detuning parameter € ~ (V_-V )

* Only states with similar energies can mix (consider S=T , S=T )

Energy




Energy

Gerneral method for propagation
and readout

 |nitialize in (0,2)S

« Pulse transferes (0,2)S into the spatially separated (1,1)S state
e (1,1)S and (1,1)T form a two level system

 The (1,1)S state is manipulated

 The state is projected back onto (0,2)S if the final state was
(1,1)S and measured with the QPC. Tripplet state is blocked
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Manipulation of states, dephasing

Short voltage pulse to large detuning suppresses exchange
Interaction of separated spins

Due to different hyperfine interactions caused by the GaAs
nuclei in the QDs, different rotations occur

-> dephasing
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Limits of the coherence

e \Weak interaction with ~10° other GaAs atoms

* Fluctuations of the magnetic field of 1-5mT,
chaning at arround 10us




Experimental results of dephasing

« Correlation of the states decays gaussian

- With B-field of 100mT, S state can only mix with the T  state and
thus S has a higher probability than with B=0mT
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SWAP

* The four states can be maped on the bloch
sphere

* At an energy of slightly below ¢ the state rotates
betweenthe states | >and!| >

o After a time t; the state changes from| > to
| > or vice versa, this is called JSWAP



Rabi oscillations

By a slow decrease of € the state gets initialized in the |T | >
state

Small detuning leads to a rotation around the z-axis due to large
exchange interaction

Depending on T the state is in a superposition of [T {>, | T>

The slow increase of € leads either to (1,1)S or (1,1)T state
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Experimental results of Rabi
osclillations

* Rotations about the x-axis leads to oscillations on the singlet
probability

 The decaytime is proportional to the frequency

« Small detuning leads to higher exchange and therefore to faster
rotations
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Spin echos

Idea: reduce the dephasing by using rabi oscillations

rotation by (2n+1)=r about z-axis

Let system evolve for the same time 7_ = 1_

dephasing is interfering destructively
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Conclusion

Coherent control of a logical qubit based on
two-electron spin states

Electrostatic gate control only

Rabi osclillations and SWAP operation were
demonstrated

Spin echo technigue reduces the decoherence
caused by B-field fluctuations
-> enhanced coherent spin-lifetime of 1us
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