Demonstration of Quantum Algorithms with Cavity Coupled Superconducting Qubits

Chris Myers and Yves Salathé

Based on paper by L.DiCarlo et al. Nature 2009

Introduction

Several criteria have to be fulfilled in order to build a quantum computer (DiVincenzo).

Contents

- Cavity and circuit QED
- The transmon qubit
- Qubit spectroscopy and operations
- The dynamical phase
- Implementation of the Grover algorithm
- Conclusion

Cavity QED

Circuit QED

Cavity QED	Circuit QED
Atom	Superconducting Qubit
Cavity	Transmission Line Resonator

The Transmon Qubit

• Same Hamiltonian as Cooper Pair Box

$$\hat{H} = 4 E_C (\hat{n} - n_g)^2 - E_J \cos \hat{\phi}$$

- Additional large capacitance C_B
- SQUID allows tuning of $E_J = E_{J,max} |\cos(\pi \phi/\phi_0)|$

Comparison of Transmon and CPB

Transmon

 $E_J/E_C \gg 1$

 $E_J/E_C \ll 1$

• The increase in this ratio makes the transmon less sensitive to charge noise

Also decreases anharmonicity

Charge Dispersion

Qubit Spectroscopy

Interesting Points

•I : Flux sweet spot for both qubits

•II : Avoided crossing with state outside computational domain

•III : Transverse coupling

•IV : Vacuum Rabi splitting

Single-Qubit Operations

• Apply microwave pulses through the cavity with frequencies close to either f_L or f_R .

•In the frame of the pulse, the Hamiltonian close to resonance for the corresponding qubit is:

$$\hat{H}(t) = \hbar \omega_{qubit} / 2 \hat{\sigma}_z + \hbar \epsilon \cos(\omega_{pulse} t + \varphi) \hat{\sigma}_x$$

•Rotating wave approximation (see exercise 3):

$$\hat{H}_{eff} = (\omega_{qubit} - \omega_{pulse})\hat{\sigma}_z + \epsilon \cos\varphi \hat{\sigma}_x + \epsilon \sin\varphi \hat{\sigma}_y$$

Towards Two-Qubit Operations: The Dynamical Phase

 Recall: in general, solutions to the Schrödinger equation have to obey

$$\psi_n(t) = \sum_n c_n(t) \phi_n(t) e^{-i/\hbar \int_0^t E_n(t') dt'}$$

With $\hat{H}(t)\phi_n(t) = E_n(t)\phi_n(t)$

- The exponent is called dynamical phase.
- Adiabatic evolution means tha $c_n(t)$ is constant.

Two-Qubit Operations : Spectroscopy

Adiabatically tune V_R close to point II and back:

Two-Qubit operations : The C-Phase Gate

- The avoided crossings include state-dependent dynamical phase.
- This evolution is described by the operator:

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i\phi_{01}} & 0 & 0 \\ 0 & 0 & e^{i\phi_{10}} & 0 \\ 0 & 0 & 0 & e^{i\phi_{11}} \end{pmatrix}$$

with $\phi_{lr}=2\pi\int \delta f_{lr}dt$, where δf_{lr} is the deviation of the frequency to its value at point I.

• The ground state does not acquire a dynamical phase.

Implementation of Grover Algorithm

$$O|\psi\rangle = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} |\psi\rangle \qquad \begin{array}{c} \mathbf{b} \\ \mathbf{0.5} \\ \mathbf{0.5} \\ \mathbf{0} \\ -\mathbf{0.5} \\ \mathbf{0} \\ \mathbf{$$

- Start in Ground State
- Create a maximal superposition of all states

•This 'marks' the solution by inverting it's phase

$$|\psi\rangle = \frac{1}{2} \left(|00\rangle + |01\rangle - |10\rangle + |11\rangle\right)$$

- Apply 1 qubit rotations
- Now in one of the Bell States

$$|\Psi^+\rangle = \frac{1}{\sqrt{2}} (|0, 0\rangle + |1, 1\rangle)$$

- Apply the operation cU_{00}
- Undoes entanglement, now in equal superposition state

$$|\psi\rangle = \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

- More one qubit rotations produces final state, which is the answer $|1,\,0\rangle$.

Correct state produced with a fidelity of 85%

Conclusion

- Showed the successful implementation of a two qubit system, by means of circuit QED.
- Implementation shows fulfilment of several of the DiVincenzo criteria.
- The architecture used can be expanded to produce a system of several qubits.

Thank you for your attention