Dispersive Regime for Quantum Computation

Non-Resonant (Dispersive) Interaction

approximate diagonalization:
$$|\Delta| = |\omega_a - \omega_r| \gg g$$
:
 $H \approx \hbar \left(\omega_r + \frac{q^2}{\Delta} \sigma_z \right) a^{\dagger} a + \frac{\hbar}{2} \left(\omega_a + \frac{q^2}{\Delta} \right) \sigma_z$
cavity frequency shift
and qubit ac-Stark shift
 (1)
 (1)
 (0)
 (1)
 (0)
 (1)
 (0)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (2)
 (1)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ę

Circuit QED – read out of qubit state

transmission measurement to determine qubit state: •

Phase sensitive measurement of transmitted microwave:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Circuit QED – read out of qubit state

• transmission measurement to determine qubit state:

dispersive Hamiltonian:

$$\begin{split} H = \hbar(\omega_r + \chi \sigma_z) a^{\dagger} a + \frac{\hbar}{2} (\omega_a + \chi) \sigma_z \\ & \checkmark \\ \text{state-dependent frequency shift} \quad -> \sigma_z \, \text{determined} \\ \text{extendable to more qubits} \end{split}$$

excite qubit at t<o

measure transmitted field quadratures (I, Q) with microwave drive at resonance $(\omega_m = \omega_r - \chi)$

qubit in ground state: full resonator transmission (rise time given by κ)

qubit in excited state: only partial transmission until qubit decays to ground state

Population reconstruction

Area between curves is proportional to qubit state population:

50

Coherent Single Qubit Control

Qubit control

apply microwave signal through resonator input

or through side-gate

time-dependent Hamiltonian for state manipulation

$$\hat{H} = \frac{1}{2}\hbar\omega_a\hat{\sigma}_z + \hbar\Omega_R\cos(\omega_b t + \phi_R)\hat{\sigma}_x$$

Coherent Control of a Qubit in a Cavity

- qubit state represented on a Bloch sphere
- vary length, amplitude and phase of microwave pulse to control qubit state

Qubit Control and Readout

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Coherent population transfer – Rabi Oscillations

3 measurements for 3 coefficients r_x , r_y , r_z of $\rho = \frac{1}{2}(id + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3 measurements for 3 coefficients r_x, r_y, r_z of $\rho = \frac{1}{2}(id + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$

Measurement along z-axis: $r_z = \langle \sigma_z \rangle = \text{Tr}[\rho \sigma_z]$

3 measurements for 3 coefficients r_x, r_y, r_z of $\rho = \frac{1}{2}(id + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$

Measurement along z-axis: $r_z = \langle \sigma_z \rangle = \text{Tr}[\rho \sigma_z]$ Rotation + measurement: $r_x = \langle \sigma_x \rangle = \text{Tr}[(\frac{\pi}{2})_y \rho(\frac{\pi}{2})_{-y} \sigma_z]$

3 measurements for 3 coefficients r_x , r_y , r_z of $\rho = \frac{1}{2}(id + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$

Measurement along z-axis: $r_z = \langle \sigma_z \rangle = \operatorname{Tr}[\rho \sigma_z]$ Rotation + measurement: $r_x = \langle \sigma_x \rangle = \operatorname{Tr}[\left(\frac{\pi}{2}\right)_y \rho\left(\frac{\pi}{2}\right)_{-y} \sigma_z]$ Rotation + measurement: $r_y = \langle \sigma_y \rangle = \operatorname{Tr}[\left(\frac{\pi}{2}\right)_x \rho\left(\frac{\pi}{2}\right)_{-x} \sigma_z]$

Control and Tomographic Read-Out of Single Qubit

Rabi rotation pulse sequence:

L. Steffen et al., Quantum Device Lab, ETH Zurich (2008)