Shor's algorithm: Order finding and factorization

Ruben Dezeure \& Manuel Schneider

Outline

- Introduction
- Quantum Fourier Transform
- Phase Estimation
- Modular Exponentiation
- Order Finding
- Prime Factorization

What is Shor's algorithm and why is it interesting?

Eidgenössische Technische Hochschule Zürich

Introduction

Eidgenössische Technische Hochschule Zûrich
Swiss Federal Institute of Technology Zurich

Introduction

Eidgenössische Technische Hochschule Zürich

Introduction

superpolynomial time on classical computers

quantum polynomial time for Shor's algorithm!

idgenössische Technische Hochschule Zürich

Quantum Fourier Transform

Quantum Fourier Transform

Quantum Fourier Transform

discrete Fourier transform

Quantum Fourier Transform

classical

$$
y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{2 \pi i j k / N}
$$

Quantum Fourier Transform

classical

$$
\begin{array}{r}
y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{2 \pi i j k / N} \\
|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x_{j} e^{2 \pi i j k / N}|k\rangle
\end{array}
$$

idgenössische Technische Hochschule Zürich

Phase Estimation

Phase Estimation

- general procedure
- key for many quantum algorithms

Phase Estimation

- general procedure
- key for many quantum algorithms
unitary operator
U
eigenvector
$|u\rangle$
eigenvalue
$e^{2 \pi i \varphi}$, unknown
φ

Phase Estimation

1.

$|0\rangle|u\rangle$
initial state

Phase Estimation

1. $\quad|0\rangle|u\rangle$
2. $\rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j}|j\rangle|u\rangle$

create superposition

Phase Estimation

1. $|0\rangle|u\rangle$
initial state
2. $\rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j}|j\rangle|u\rangle$
3. $\rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j}|j\rangle U^{j}|u\rangle$
create superposition apply black box

Phase Estimation

$$
\begin{aligned}
& \text { 1. } \quad|0\rangle|u\rangle \\
& \text { 2. } \rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j}|j\rangle|u\rangle \\
& \text { 3. } \rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j}|j\rangle U^{j}|u\rangle \\
& =\frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j} e^{2 \pi i j \varphi_{u}}|j\rangle|u\rangle
\end{aligned}
$$

initial state
create superposition
apply black box

Phase Estimation

$$
\begin{aligned}
& \text { 1. } \quad|0\rangle|u\rangle \\
& \text { 2. } \rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j}|j\rangle|u\rangle \\
& \text { 3. } \rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j}|j\rangle U^{j}|u\rangle \\
& =\frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} x_{j} e^{2 \pi i j \varphi_{u}}|j\rangle|u\rangle \\
& \text { 4. } \rightarrow|\varphi\rangle|u\rangle
\end{aligned}
$$

initial state
create superposition apply black box
apply inverse FT

Phase Estimation

Eidgenössische Technische Hochschule Zürich

Modular Exponentiation

Modular Exponentiation

$$
\frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{t-1} x_{j}|j\rangle U^{2^{j}}|u\rangle
$$

Modular Exponentiation

$$
\frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{t-1} x_{j}|j\rangle U^{2^{j}}|u\rangle
$$

$|z\rangle|y\rangle$

Modular Exponentiation

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{t-1} x_{j}|j\rangle U^{2^{j}}|u\rangle \\
& |z\rangle|y\rangle \\
& \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{t-1} x_{j}|z\rangle U^{z_{j} 2^{j}}|y\rangle
\end{aligned}
$$

Eidgenössische Technische Hochschule Zürich

Modular Exponentiation

$$
U|y\rangle \equiv|x y(\bmod N)\rangle
$$

Modular Exponentiation

$$
U|y\rangle \equiv|x y(\bmod N)\rangle
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{t-1} x_{j}|z\rangle\left|x^{z_{j} 2^{j}} y(\bmod N)\right\rangle \\
& \quad=|z\rangle\left|x^{z} y(\bmod N)\right\rangle
\end{aligned}
$$

Order-finding

- Find least positive r for specified x and N such that:

$$
x^{\prime}=1(\bmod N)
$$

- No classical algo exists polynomial in O(L)

$$
L \equiv\left\lceil\log _{2}(N)\right\rceil
$$

Order-finding: Quantum algorithm

- Phase estimation applied to operator U

$$
U|y\rangle \equiv|x y(\bmod N)\rangle \quad y \in\{0,1\}^{L}
$$

- Then eigenstates of U are:

$$
\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \left[\frac{-2 \pi i s k}{r}\right]\left|x^{k} \bmod N\right\rangle \quad 0 \leq s \leq r-1
$$

Order-finding: Quantum algorithm

$$
\begin{aligned}
\left|u_{s}\right\rangle & \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \left[\frac{-2 \pi i s k}{r}\right]\left|x^{k} \bmod N\right\rangle \quad 0 \leq s \leq r-1 \\
U\left|u_{s}\right\rangle & =\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \left[\frac{-2 \pi i s k}{r}\right]\left|x^{k+1} \bmod N\right\rangle \\
& =\exp \left[\frac{2 \pi i s}{r}\right]\left|u_{s}\right\rangle
\end{aligned}
$$

Obtain estimate s / r using phase estimation procedure Order r can be obtained with a little bit more work.

Order-finding: requirements

- Need efficient procedure for U for any

$$
U|y\rangle \equiv|x y(\bmod N)\rangle
$$

\rightarrow satisfied by using modular exponentiation

- Must be able to prepare $\left|u_{s}\right\rangle$
\rightarrow trickier, need r
exists clever fix for that then we only obtain estimate $\quad \varphi \approx s / r$

Order-finding: continued fraction expansion

- Now have estimate $\varphi \approx s / r$ would like to get r

Theorem: Suppose s / r is a rational number such that

$$
\left|\frac{s}{r}-\varphi\right| \leq \frac{1}{2 r^{2}}
$$

Then s / r is a convergent of the continued fraction for φ.
\rightarrow Can use the continued fraction algorithm

Order-finding: continued fraction expansion

- The continued fraction algorithm

$$
\frac{31}{13}=2+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}} .
$$

Can get s‘ and r‘ such that

$$
\frac{S^{\prime}}{r^{\prime}}=\frac{S}{r} \quad \rightarrow \text { find correct } r \text { with probability }>1 / 4
$$

Factoring algorithm

- Factoring can be reduced to order-finding

Theorem: if x non trivial solution of

$$
x^{2}=1(\bmod N)
$$

Then at least either $\operatorname{gcd}(x-1, N) \operatorname{orgcd}(x+1, N)$ is a nontrivial factor of N. Can be computed using $O\left(L^{3}\right)$ operations.

Theorem: $\quad N=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$
x chosen at random $1 \leq x \leq N-1$ and co-prime with N. r is order of $x \bmod N$.
Then $p\left(r\right.$ is even and $\left.x^{r / 2} \neq-1(\bmod N)\right) \geq 1-\frac{1}{2^{m}}$

Factoring algorithm

1. Determine if N trivially factorisable
2. Randomly choose $x>0$ and $<N$. if $\operatorname{gcd}(x, N)>1$ return it
3. Order-finding to find $r \quad x^{r}=1(\bmod N)$
4. If r even and $x^{r / 2} \neq-1(\bmod N)$ then compute $\operatorname{gcd}\left(x^{r / 2}-1, N\right)$ and $\operatorname{gcd}\left(x^{r / 2}+1, N\right)$
\rightarrow Each of these 2 can be a nontrivial factor of N If not: repeat 3-4

Conclusions

- Quantum algorithm factorizes in polynomial time
- Critical components:
- Quantum FT
- Modular exponentiation
- Order finding

