Quantum Information Processing with Semiconductor Quantum Dots

slides courtesy of Lieven Vandersypen, TU Delft

Examples of quantum dots

Electrically controlled and measured quantum dots

A small semiconducting (or metallic) island where electrons are confined, giving a discrete level spectrum

- Coupled via tunnel barriers to source and drain reservoirs
- Coupled capacitively to gate electrode, to control # of electrons

Electrostatically defined quantum dots

- Electrically measured (contact to 2DEG)
- Electrically controlled number of electrons
- Electrically controlled tunnel barriers

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Initialization	1-electron, low T, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$	
		-
Read-out	convert spin to charge	
	then measure charge	
ESR	pulsed microwave magnet	ic field
	$H_{\rm RF} \sim \sum A_i(t) \cos(\omega_i t)$	σ _{xi}
SWAP	exchange interaction	
	$H_J \sim \Sigma J_{ij}(t) \sigma_i \cdot \sigma_j$	
Coherence	long relaxation time T_1 long coherence time T_2	

Transport through quantum dot -Coulomb blockade

A quantum point contact (QPC) as a charge detector Field *et al*, PRL 1993

The last electron!

Energy level spectroscopy at B = 0

Single electron Zeeman splitting in B//

Hanson et al, PRL 91, 196802 (2003) Also: Potok et al, PRL 91, 016802 (2003)

Initialization of a single electron spin

<u>Method 1:</u> spin-selective tunneling

<u>Method 2:</u> relaxation to ground state

Few-electron double dot design

Ciorga et al '99

Elzerman et al., PRB 2003

GaAs/AlGaAs wafers:

NTT (T. Saku, Y. Hirayama) Sumitomo Electric Universität Regensburg (W. Wegscheider)

Few-electron double dot Measured via QPC

J.M. Elzerman et al., PRB 67, R161308 (2003)

QPC can detect all charge transitions

Few-electron double dot Transport through dots

J. Elzerman et al., cond-mat/0212489

*

Peak height < 1 pA

2 pA

70 pA

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

nitialization	1-electron, low T, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$	
Read-out	convert spin to charge then measure charge	
ESR	pulsed microwave magnet $H_{RF} \sim \sum A_i(t) \cos(\omega_i t)$	c field σ _{xi}
SWAP	exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$	
Coherence	long relaxation time T_1 long coherence time T_2	

Spin read-out principle: convert spin to charge

Observation of individual tunnel events

Vandersypen *et al*, APL 85, 4394, 2004 Also: Schlesser *et al*, 2004

- *V_{sp}* = 1 mV
- *I_{QPC}~* 30 nA
- ∆*l_{QPC}* ~ 0.3 nA
- Shortest steps ~ 8 µs

Pulse-induced tunneling

Spin read-out procedure

Inspiration: Fujisawa et al., Nature 419, 279, 2002

Spin read-out results

Elzerman et al., Nature 430, 431, 2004

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

Ir

R

S

Qub

J(t)

nitialization	1-electron, low <i>T</i> , high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$	
ead-out	convert spin to charge then measure charge	
SR	pulsed microwave magnetic $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma$	field xi
WAP	exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$	
oherence	long relaxation time T_1 long coherence time T_2	

ESR detection in a single dot

ESR lifts Coulomb blockade

Engel & Loss, PRL 2001

Double dot in spin blockade for ESR detection

Advantage: interdot transition instead of dot-lead transition

- Insensitive to temperature
 - \Rightarrow can use *B* < 100 mT, *f* < 500 MHz
- Insensitive to electric fields

ESR flips spin, lifts spin blockade

Combine Engel & Loss (PRL 2001) ESR detection with Ono & Tarucha (Science 2002) spin blockade

ESR device design

Gates ~ 30 nm thick gold Dielectric ~ 100nm calixerene Stripline ~ 400nm thick gold

Expected AC current ~ 1mAExpected AC field ~ 1mTMaximize B_1 , minimize E_1

ESR spin state spectroscopy

Coherent manipulation: pulse scheme

- Initialization in mixture of $\uparrow\uparrow$ and $\downarrow\downarrow$
- Measurement switched off (by pulsing to Coulomb blockade) during manipulation
- Read-out: projection on $\{\uparrow\uparrow,\downarrow\downarrow\}$ vs. $\{\uparrow\downarrow,\downarrow\uparrow\}$ basis

Coherent rotations of single electron spin!

Koppens et al. Nature 2006

- Oscillations visible up to 1µs
- Decay non exponential \rightarrow slow nuclear dynamics (non-Markovian bath)
- Agreement with simple Hamiltonian

taking into account different resonance conditions both dots

Driven coherent oscillations

• Oscillation frequency ~ $B_{AC} \rightarrow$ clear signature of Rabi oscillations

• $\pi/2$ pulse in 25ns

• max
$$B_1 = B_{AC}/2 = 1.9 \text{ mT}$$

 $B_{N,z} = 1.3 \text{ mT}$ estimated fidelity ~73%

Koppens et al. Nature 2006

Spin qubits in quantum dots

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

long coherence time T_2

Coherent exchange of two spins

Petta et al., Science 2005

- free evolution under exchange Hamiltonian
- swap^{1/2} in as little as 180 ps
- three oscillations visible, independent of J

Spin qubits in quantum dots - present status

then measure charge

pulsed microwave magnetic field
$$H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$$

ESR

Single electron tunneling through two dots in series

Can we access the quantum world at the level of single-particles? in a solid state environment?

Kane, Nature 1998

Imamoglu et al, PRL 1999

5

Loss & DiVincenzo PRA 1998