Quantum Dot Spin QuBits

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

J. R. Petta,¹ A. C. Johnson,¹ J. M. Taylor,¹ E. A. Laird,¹ A. Yacoby,² M. D. Lukin,¹ C. M. Marcus,¹ M. P. Hanson,³ A. C. Gossard³

Quantum Devices for Information Technology
Outline

I. Double Quantum Dot

II. The Logical Qubit

III. Experiments
1. Reminder: Quantum Dot (QD)

AlGaAs/GaAs heterostructure \rightarrow 2DEG at the interface.

1. Reminder: Quantum Dot (QD)

Electrically-defined island → top gates on a 2DEG
2 tunable parameters:
- source and drain bias
- plunger gate voltage

1. Reminder : Quantum Dot (QD)

Electrically-defined island → top gates on a 2DEG
2 tunable parameters : - source and drain bias
- plunger gate voltage

1. Reminder: Quantum Dot (QD)

Electrically-defined island \rightarrow top gates on a 2DEG

2 tunable parameters:
- source and drain bias
- plunger gate voltage

Picture from:
2. Double Quantum Dot

Electrically-defined island → top gates on a 2DEG
2 tunable parameters:
- source and drain bias
- plunger gate voltages

3. Two-electron regime

A Quantum Point Contact is used to determine the charge state in the dots.

I. Double Quantum Dot

3. Two-electron regime

A Quantum Point Contact is used to determine the charge state in the dots.

\[S(1,1) = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2}, \]
\[T_+(1,1) = |\uparrow\uparrow\rangle, \]
\[T_0(1,1) = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2}, \]
\[T_-(1,1) = |\downarrow\downarrow\rangle. \]

\[S(0,2) = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2}, \]
\[T_+(0,2) = |\uparrow\uparrow\rangle, \]
\[T_0(0,2) = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2}, \]
\[T_-(0,2) = |\downarrow\downarrow\rangle. \]
I. Double Quantum Dot

3. Two-electron regime

\[\Delta V = \eta \Delta V \]

\[\varepsilon = \eta \Delta V \]
3. Two-electron regime

\[\varepsilon = \eta \Delta V \]

\[\rightarrow (1,1) \text{ and } (0,2) \text{ hybridize.} \]
3. Two-electron regime

\[\Delta V = \eta \Delta V \]

\[\epsilon = \eta \Delta V \]

→ (1,1) and (0,2) hybridize.

→ Triplet states are split.

I. Double Quantum Dot

II. The Logical Qubit

III. Experiments
II. The Logical QuBit

1. Which System?

![Diagram showing energy levels and transitions labeled $(0,2)T_-, (0,2)T_0, (0,2)T_+$ and $(0,2)S$.]

II. The Logical QuBit

1. Which System?

![Graph showing energy levels and transitions labeled as T_-, T_0, T_+, and $(0,2)S$.]

II. The Logical QuBit

1. Which System?

II. The Logical QuBit

1. Which System?

- ΔB_z between the dots.
- S and T_0 are mixed by hyperfine field.

Picture from:
II. The Logical QuBit

2. Singlet-Triplet QuBit

\[H = \begin{pmatrix} J(\varepsilon) & \Delta B^Z_{\text{nuc}} \\ \Delta B^Z_{\text{nuc}} & 0 \end{pmatrix} \]

- \(J = \) exchange energy between singlet and triplet
 \(\rightarrow \) rotation around the z-axis.

- \(\Delta B^Z_{\text{nuc}} = \) difference in B-field seen by the two electrons
 \(\rightarrow \) rotation around x-axis

Picture from:
II. The Logical QuBit

3. Manipulation

1. Initialization

Source [6]
3. Manipulation

2. Spin separation
Fast sweep rate

Source [6]
II. The Logical QuBit

3. Manipulation

3. Adiabatic sweep
II. The Logical QuBit

3. Manipulation

4. Manipulation

Source [6]
II. The Logical QuBit

3. Manipulation

5. Read-out
Determination of the charge state via QPC
→ measurement of P_s
Outline

I. Double Quantum Dot

II. The Logical Qubit

III. Experiments
III. Experiments

1. Coherence

How long do two spatially separated electrons retain coherence?

→ Measurement of the dephasing time of S(1,1)

Determinant of the spin state using the calibrated QPC charge sensor

→ Estimation of T_2^*

~10ns
III. Experiments

2. Manipulation and SWAP

\[\phi = \frac{J(\epsilon) \tau_E}{\hbar} \]

If \(\phi = \pi \): Swap!

Source [6]
III. Experiments

2. Manipulation and SWAP

If $\phi = J(\epsilon)\tau_E \Rightarrow \pi \Rightarrow 180\text{ps}$

$$\phi = \frac{J(\epsilon)\tau_E}{\hbar}$$

If $\phi = \pi$: Swap!
Conclusion

- Coherent control of a logical QuBit
- T_2^* was measured
- Rabi Oscillations were observed
- $\sqrt{\text{SWAP}}$ operation-time $\sim 180\text{ps.}$
Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits

M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, A. Yacoby

3 weeks ago...
End of the presentation

Thank you for your attention!

And many thanks to Arkady.

Questions?

III. Experiments

3. Spin Echo

[Diagram showing experimental setup and data analysis]