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The control of quantum states is an important 
building block for fundamental investigations and 
technological applications of quantum physics. 
However, quantum many-body systems exhibit 
complex behaviors that make them difficult to 
manipulate, in particular in the presence of intrinsic 
dephasing, decoherence or decay. One strategy to 
control such quantum states is to implement operations 
faster than the characteristic timescales of the 
prejudicial processes, using for example optimal 
control theory (OCT). The speedup can be exploited to 
experimentally realize elaborate manipulations, for 
instance precisely controlled ultra-fast single electron 
spin gates using specially designed microwave fields 
[1] or a sequence of state transfer pulses for 
interferometry [2].  

The maximum achievable speedup is influenced 
non-trivially by inter-particle interactions, but their 
effect can be compensated for if many-body 
nonlinearity is properly taken into account (see Fig. 1). 
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sphere connecting the initial and the target state [see
Fig. 1(d)]. Our main goal is to extend the geodesic inter-
pretation of the QSL to interacting bosonic many-body
quantum systems. At the beginning we show that at
the level of the two-mode BJJ model, which in the pres-
ence of inter-particle interactions becomes nonlinear [12],
the time-optimal dynamics does follow a geodesic too.
This can be achieved by canceling the deviations from
the geodesic path, due to the nonlinear interaction, by
means of analytically computable Compensating Control
Pulses (CCP). We then study the range of validity of
this strategy in a double well configuration in coordinate
space where the two-mode and GPE approximations may
not hold anymore. We show that the CCP performs very
well even close to the QSL if fragmentation, a genuine
many-body effect, is neglected. We find, quite surpris-
ingly, that for strong interactions – when the uncontrolled
dynamics experience the self-trapping – the CCP leads
to even faster speeds of the full transfer, taking efficiently
advantage of the increase in the effective tunneling cou-
pling. Finally we show that, when large deviations from
the ideal transfer efficiency close to QSL occur, they are
corrected by means of optimal control by applying the
Chopped RAndom Basis (CRAB) algorithm [13].
QSL of a BJJ. The dynamics of the most general

scenario of a quantum optimal control problem is de-
scribed by the Hamiltonian H(t) = Hd +

∑

i ci(t)Hi,
where Hd represents the time-independentpart of the dy-
namics (drift), and Hi are the control parts with control
pulses ci(t). Here we focus on the task of optimizing
the transfer from an initial state |ψ0⟩ to a target state
|ψT ⟩. Optimal control looks for an optimal time depen-
dence of the control pulses ci(t) such that a given figure
of merit is minimized [14]. For the latter we use the infi-
delity ε = 1− F 2, where F (ρT , ρ) = Tr

[√√
ρT ρ

√
ρT

]

is
the Uhlmann fidelity which measures the overlap of the
two density matrices ρT and ρ [15] and vanishes when
the transfer to the target state is complete. The typical
questions that arise in optimal control are threefold: (i)
is a complete transfer possible (ε = 0)? (ii) If so, what
is the minimum time (i.e., the quantum speed limit) to
achieve it? (iii) What are the optimal control pulses ci(t)
that minimize the infidelity, the transfer time, or both?
The answers to these questions depend on the specific
quantum system [7, 16, 17]. Recently formal expressions
have been derived to compute the QSL for a general Li-
ouvillian evolution [18, 19].
The Hamiltonian of a linear two-level system reads:

HL(t) = −!Jσx + !D(t)σz , where the drift term ex-
presses the coupling strength J between the two lev-
els and D(t) is the (controllable) detuning. A proto-
typical process that can be driven in such a system is
a state-to-state transfer [3, 7, 16]. In Fig. 1 we repre-
sent the quantum state |ψ(t)⟩ = eiα(t){cos[θ(t)/2]|ψ0⟩ +
sin[θ(t)/2]eiφ(t)|ψT ⟩} on a Bloch sphere. The speed of
a quantum state moving in the Hilbert space is: ṡ(t) =

(d)
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FIG. 1. (a)-(c) The dynamics of the bosonic Josephson junc-
tion is studied at various levels of complexity and approxi-
mations. (d) Bloch Sphere representation of different paths
for the two-mode nonlinear dynamics for UN/2J = 1: uncon-
trolled GPE (red), CCP (green), and CRAB-optimized with
constraints on the pulse D(0) = −D(T ) = 2J (blue). The
path with black asterisks represents a geodesic. Upper and
lower sketches: Initial and target states in the double-well
potential (black line) for strong (magenta) and weak (cyan)
interaction strength. Left and right sketches: controlled and
uncontrolled wave functions and trap potentials.

2∆H(t)/!, where ∆H(t) =
√

⟨H2(t)⟩ − ⟨H(t)⟩2, and s
is the geodesic distance between two states |ψ⟩,|χ⟩, de-
fined as |⟨χ|ψ⟩|2 = cos2(s/2) [20]. In a two-level sys-

tem, the speed ṡ(t) =
√

θ̇(t)2 + sin2 θ(t)φ̇(t)2 has two

components: θ̇(t) = J sinφ(t), which drives the state
along the meridians of the Bloch sphere, and φ̇(t) =
D(t) + J cot θ(t) cosφ(t) along the parallels. In order
to reach the time-optimal transfer between north and
south pole of the Bloch sphere (see also Fig. 1), only the
speed term θ̇(t) should be maximized: that is, θ̇ = J
at φ(t) = ±π/2, which implies D(t) = 0. Therefore the
pulse given by the condition D(t) = 0 minimizes the infi-
delity (i.e., ε→ 0), the transfer time TL

QSL, and the path
length S =

∫

ṡ dt = π following the geodesic (φ(t) is
constant). In case constraints are present on the control
pulse, e.g. certain initial and final values of the detun-
ing are assumed and can not be changed instantaneously,

 
Figure 1: Effect of nonlinearity on the optimal 

dynamics of a Bosonic Josephson Junction [3]. 

Reversibility of quantum dynamics can also be 
attained experimentally via optimal control [4]. The 
bandwidth of the corresponding control pulses allows 
for a characterization of quantum many-body 
processes [5], and for dynamical discrimination 
between different level of complexity in quantum 
many-body systems. 
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