nature

Vol 460 9 July 2009 doi:10.1038/nature08121

LETTERS

Demonstration of two-qubit algorithms with a superconducting quantum processor

L. DiCarlo¹, J. M. Chow¹, J. M. Gambetta², Lev S. Bishop¹, B. R. Johnson¹, D. I. Schuster¹, J. Majer³, A. Blais⁴, L. Frunzio¹, S. M. Girvin¹ & R. J. Schoelkopf¹

¹Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA. ²Department of Physics and Astronomy and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. ³Atominstitut der Österreichischen Universitäten, TU-Wien, A-1020 Vienna, Austria. ⁴Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.

Tasks and challenges

Requirements already achieved:

- ✤ large coherence times
- single-qubit gates with low error rates
- two-qubit entanglement with good concurrence
- readout with high fidelity
- ✦ Whats new in this paper:
 - combination of all these achievements in one device
- Remaining challenges:
 - ✤ scalability

Device fabrication

- Sputtered NB film on corundum wafer
- Waveguide structures via optical lithography
- Transmon features patterned using:
 - electron-beam lithography
 - double-angle evaporation of Al
 - lift-off
- whole device cooled down to 13mK

ETH zürich

Device structure

- + quantum bus architecture
- cavity couples qubits via virtual photon exchange
- four-port superconducting device with two transmon qubits
- flux-bias lines that tune individual qubit frequencies → single-qubit gate
- µulsing qubit frequencies to an avoided crossing

 two-qubit conditional phase gate
- local magnetic fields to tune qubit transition frequencies by many GHz

$$nf \approx \sqrt{8E_{\rm C}E_{\rm J}^{\rm max}|\cos(\pi\Phi/\Phi_0)|} - E_{\rm C}$$

4

Single Qubit preparation

- ✦ Changing V_R
 - Flux change
- Single state preparation in point I
 - Large detuning in qbuit frequencies
- Computational Basis
 - + 00, 01, 10 ,11

$$H = \omega_{\mathrm{C}} a^{\dagger} a + \sum_{q \in \{\mathrm{L}, \mathrm{R}\}} \left(\sum_{j=0}^{N} \omega_{0j}^{q} |j\rangle_{q} \langle j|_{q} + \left(a + a^{\dagger}\right) \sum_{j,k=0}^{N} g_{jk}^{q} |j\rangle_{q} \langle k|_{q} \right)$$

Two Qubit interaction

- Use a non computational state for two qubit rotation in point II
- Interaction can be tuned over two orders of magnitude

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i\phi_{01}} & 0 & 0 \\ 0 & 0 & e^{i\phi_{10}} & 0 \\ 0 & 0 & 0 & e^{i\phi_{11}} \end{pmatrix}$$

 $\phi_{11} = \phi_{01} + \phi_{10} - \int \zeta(t) \mathrm{d}t.$

The Readout Process

- Joint dispersive readout
 - Send frequency into resonator close to resonator frequency
 - → Dispersive qubit resonator interaction → three constant coefficients have approximately the same magnitude

$$M = \beta_1 \sigma_z^{\rm L} + \beta_2 \sigma_z^{\rm R} + \beta_{12} \sigma_z^{\rm L} \otimes \sigma_z^{\rm R}$$

- State tomography
 - Make statistics of dispersive readout to reproduce the elements of the density matrix
 - In this paper 450'000 Data points

Bell state preparation:

- Concurrence : around 0.85
- Fidelty: upto 0.94

Algorithms - Preliminaries

- Quantum Gate: Unitary Transformation on 1 or n-qubits
- + Hadamard-Gate: Transformation X ↔ Z basis
 Used to create superposition states
- Quantum Parallelism:
 Evaluation of f(x) for various values of x
 Using superposition

T

Grover Algorithm

★ Aim: search element x₀ in list
★ Classically: O(N)
★ QM: O(√N)

+ Input:
$$x \in \{00, 01, 10, 11\}$$

Output:

$$f(x) = \begin{cases} 1 & x = x_0 \\ 0 & \text{else} \end{cases}$$

✦ Single run:

$$\hat{O} |x\rangle = (-1)^{f(x)} |x\rangle = c U_{ij} |x\rangle$$
 a.

1 iteration of Grover/ b. Input $|00\rangle$ / c. Superposition/ d. Oracle/ e. $R_y^{\pi/2}$ on Q_R / f. $R_y^{\pi/2}$ on Q_L creates $|\Psi^+\rangle$ /g. Output state

T

Results - Grover

Table 1 | Summary of algorithmic performance

Element		Grover search oracle*				
		foo	foi	f 10	f11	
$\langle 0,0 \rho 0,0 \rangle$	ldeal	1	0	0	0	
	Measured	0.81(1)	0.08(1)	0.07(2)	0.065(7)	
$\langle 0,1 \rho 0,1 \rangle$	ldeal	0	1	0	0	
	Measured	0.066(7)	0.802(9)	0.05(1)	0.054(8)	
$\langle 1,0 \left \rho \right 1,0 \rangle$	ldeal	0	0	1	0	
	Measured	0.08(1)	0.05(1)	0.82(2)	0.07(1)	
$\langle 1,1 \rho 1,1 \rangle$	ldeal	0	0	0	1	
	Measured	0.05(2)	0.07(1)	0.06(1)	0.81(1)	

Fidelity of the reconstructed output states Uncertainties are based on 10 repititions

L

Deutsch-Josza Algorithm

Aim: Constant or Balanced?
Classically: N/2 + 1 calls of f(x)
QM: single call of f(x)
Input: x ∈ {00, 01, 10, 11}
Output: f(x) = {constant balanced

f(x): 1 input BIT \rightarrow 1 output BIT $\blacklozenge U_i |l\rangle |r\rangle = |l\rangle |r \oplus f(l)\rangle$

a. Gate sequence/ Constant: b. $f_0(x) = 0 / c. f_1(x) = 1$ Balanced: d. $f_2(x) = x / e. f_3(x) = 1 - x$

Results – Deutsch-Josza

Table 1 | Summary of algorithmic performance

Element		Deutsch-Jozsa function†				
		fo	f 1	f2	fз	
<0,0 <i>p</i> 0,0>	ldeal	0	0	1	1	
	Measured	0.010(3)	0.014(5)	0.909(6)	0.841(9)	
$\langle 0,1 ho 0,1 angle$	ldeal	0	0	0	0	
	Measured	0.012(4)	0.008(4)	0.031(8)	0.04(2)	
$\langle 1,0 ho 1,0 angle$	ldeal	1	1	0	0	
	Measured	0.93(1)	0.93(1)	0.05(1)	0.04(1)	
$\langle 1,1 ho 1,1 angle$	ldeal	0	0	0	0	
	Measured	0.05(1)	0.04(1)	0.012(9)	0.07(2)	

Fidelity of the reconstructed output states Uncertainties are based on 8 repititions

L

Achievements

&

Outlook

- Local flux control
- Joint dispersive readout in cQED
- On-demand-Generation of entangled Qubits

★ Extension to $n \ge 2$ qubits by $σ_x ⊗ σ_x$ between nearest frequency neighbour interactions

→ GHZ states
→ Simple error correction

T

Thank you!