

nature nanotechnology

Bell's inequality violation with spins in silicon

Dehollain et al., Nature Nanotechnology (2015)

Some history: from EPR to CHSH, and beyond

From the 1970's up to now:

- Increasing evidence that QM is correct
- Local realism still not completely ruled out

Clauser, Horne, Shimony, Holt (1970): Reformulation of Bell's theorem, tailored to specific experiment

Bell's Theorem and the CHSH inequality

- Bell: Correlations in local realistic theories are bound by certain values
- CHSH inequality: valid for a specific setup with two "bits"

 P_{ij} : Probability of outcome ij α, β : Settings used for measurementS: "Bell signal"

• Define correlations $E(\alpha, \beta) = P_{++} + P_{--} - P_{+-} - P_{+-}$

CHSH:
$$S = E(\alpha, \beta) + E(\alpha', \beta) + E(\alpha, \beta') - E(\alpha', \beta') \le 2$$

With proper choice of $\alpha, \alpha', \beta, \beta'$, QM allows up to $S_{\text{max}} = 2\sqrt{2}!$

Fundamental vs. practical aspect of violating the inequality

On loopholes – and how to close them

Experiments: need additional assumptions about your system in order to show violation of Bell inequality

One step further: NV centers @ Delft

Using NV centers, both detection and locality loopholes were closed in this experiment

Hensen et al. (2015)

$$S = 2.42 \pm 0.20$$

³¹P Nuclear Spin – Electron Spin System

³¹P: Spin = $\frac{1}{2}$ e⁻: Spin = $\frac{1}{2}$

²⁸Si: Spin = 0

- \rightarrow No spin-spin interaction with Si
- \rightarrow Noise reduction

³¹P Nuclear Spin – Electron Spin System

Relevant Energy-Level Scheme

Qubit Operations:

- π pulse: population inversion (CNOT)
- $\frac{\pi}{2}$ pulse: create superposition states (Hadamard)

Experimental Setup

NMR/ESR antenna→ induces qubitoperations in system

Experimental Parameters		
Temperature	≈ 100 mK	
B ₀ -Field	≈ 1.55 T	
Distance ³¹ P – SET	~ 25 nm	

Single electron transistor (SET) → spin-selective readout

Donor gate (DG) \rightarrow manipulation of electrochemical potential μ of donor

Electron Spin Readout via SET

Electrostatic Coupling

Tunnel Coupling

Low voltage V_t on donor gate: $\mu_{\downarrow} < \mu_{SET} < \mu_{\uparrow} \rightarrow$ tunneling: $|\uparrow\rangle$ out of and $|\downarrow\rangle$ into donor $(\gamma_e B_0 \gg k_B T)$

TH zürich

E *zürich*

Bell State Measurement

ETH zürich

Standard Readout - destructive

QND Readout

Comparison of Readout Techniques

	Standard	QND
Measurement Variable	$\{P_{\uparrow\uparrow}, P_{\uparrow\Downarrow}, P_{\downarrow\uparrow}, P_{\downarrow\downarrow}\}$	$E = 1 - 2P_{\Downarrow}$
Number of Measurements	300	Single-Shot
Limitations	Thermal Broadening	
Fidelity	Up to 97%	> 99.9%

E *zürich*

Bell State Measurement Results

CHSH: $S = E(\alpha, \beta) + E(\alpha', \beta) + E(\alpha, \beta') - E(\alpha', \beta') \le 2$

State Tomography

• Principle: nuclear and electron spins pick up different phases (ϕ_S , ϕ_I) under rotation about quantisation axis

$$R_{S_z}R_{I_z}|m_Sm_I\rangle = e^{-i\phi_Sm_S}e^{-i\phi_Im_I}|m_Sm_I\rangle$$

State	$ oldsymbol{\phi}^{\pm} angle$	$ \Psi^{\pm} angle$
Phase	$e^{-i(\phi_S + \phi_I)} \uparrow \uparrow \rangle \pm e^{i(\phi_S + \phi_I)} \downarrow \downarrow \rangle$	$e^{-i(\phi_S - \phi_I)} \uparrow \Downarrow \rangle \pm e^{i(\phi_S - \phi_I)} \downarrow \Uparrow \rangle$

- Phase-shifted pulses ($\Delta \phi_{S,I} \rightarrow \text{Rotations}$) are applied
 - encode the coherence as phase shifts
 - transfer undetectable coherences into the detectable $|{\downarrow}{\Downarrow}\rangle$ state
- We therefore expect oscillations in P_{\downarrow} as a function of phase increments $\Delta \phi_{S,I}$

State Tomography

- Phase increments $\Delta \phi_{S,I}$ chosen such that oscillation freq of matrix elements are separable
- Oscillation amplitude proportional to offdiagonal density matrix element
- Offsets of tomography signals yield populations

State Tomography

References

- Dehollain et al., *Bell's inequality violation with spins in silicon*, Nature Nanotechnology **11**, 242 (2015).
- A. Einstein et al., Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Physical review 47, 777 (1935).
- D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables, Physical review 85, 166 (1952).
- D. Bohm et al., *Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky*, Physical review **108**, 1070 (1957).
- J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964).
- J. F. Clauser et al., *Proposed Experiment to Test Local Hidden-Variable Theories*, Physical Review Letters **23**, 880 (1970).
- A. Aspect et al., Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities, Physical Review Letters 49, 91 (1982).
- G. Weihs et al., Violation of Bell's Inequality under Strict Einstein Locality Conditions, Physical Review Letters 81, 5039 (1998).
- D. N. Matsukevich et al., *Bell Inequality Violation with Two Remote Atomic Qubits*, Physical Review Letters **100**, 150404 (2008).
- M. Ansmann et al., Violation of Bell's inequality in Josephson phase qubits, Nature **461**, 504 (2009).
- B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015).