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About the Experiment

▪ quantum bus
▪ coherent, non-local coupling 

realized with cavity 
▪ distributed circuit element 

rather than lumped elements
Lecture Slides, A. Wallraff, Quantum Information Processing: Implementations, ETH Zürich
Original Paper: M.H. Devoret, A.Wallraff and J.M. Martinis, arXiv:condmat/0411172(2004)
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Experimental Setup

homodyne detection of
the resonator

Two Transmons: superconducting qubits of modified Cooper 
pair box
Transmission line resonator

source: Wikipedia

Leon Stolpmann & Efe Büyüközer 20.03.2017



||

Qubits used: Transmons          charge-phase qubit, modified Cooper pair box
                      

▪ flatter bands
▪ more resilient to noise [2]
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Operation principle - Transmon

[2]

[2]
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Qubits used: Transmons          charge-phase qubit, modified Cooper pair box
                      flatter bands, more resilient to noise 

Transition frequency:                        

Qubits can be tuned in resonance/off-resonance with cavity + with each other
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Operation principle - Transmon

Transition frequency tuned in situ via varying magnetic flux 
through Josephson junction loop
Loop size differs for qubits → independent control

[2]
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Operation principle - Coupling regimes

Qubit-qubit coupling in 
dispersive regime

Resonator cavity

Qubit-qubit coupling: avoided crossing → vacuum Rabi splitting

Vacuum Rabi splitting in qubit-resonator strong coupling limit

[1]
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Operation principle - Coupling regimes 

Dispersive limit
▪ Qubits detuned from resonator

▪ Qubits in resonance 
▪ Can interact directly via virtual 

photon 
▪ Coherent state transfer in strong 

dispersive limit

Strong coupling
▪ Qubits and cavity in resonance:

▪ Excitation transferred from one 
qubit to photon in channel → can 
couple back into continuum → 
Purcell loss

▪ Vacuum Rabi splitting observed

Leon
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Interaction/Coupling between qubits via virtual photons in cavity

Hamiltonian:

determined via detuning
and g1& g2 
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Operation principle - Dispersive regime

no loss, energy conserved

very short lifetime photon

qubit 1 qubit 2 resonator coupling 
qubits-resonator

coupling
qubit 1-qubit 2

qubit state-dependent shift of 
resonator frequency 

measurement

interaction strength 
between qubits

[1]
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Qubit-resonator degeneracy:
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Operation principle - Vacuum Rabi splitting
Occurs for:

● Qubit-qubit degeneracy
● Qubit-resonator degeneracy

[3][3]
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Operation principle - Qubit-qubit coupling

virtual photon

Avoided crossing indicates strong 
coupling in dispersive limit → 
coherent state transfer possible

[1]

[1]
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▪ vary      tune both qubits into resonance with cavity 
▪ vacuum Rabi splitting
▪ Superposition of Qubit-exc. and Cavity-Photon
▪ g1& g2 : Difference at maximal splitting
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Cavity Transmission and Spectroscopy of Single and Coupled 
Qubits
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Multiplexed Control and Read-out

Leon Stolpmann & Efe Büyüközer 20.03.2017

Dispersive Limit: Qubits detuned from Resonator
→ Effective resonator frequency depends on the states of the 2 qubit

Get s &    by operating qubits at transmis-

sion frequencies.

Reconsctruct two-qubit state from homodyne measurement of the cavity
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Multiplexed Control and Read-out

Rabi Oscillations of Q1 & Q2 ; aka ‘Ramsey Fringes’ → Rabi oscillations: 
oscillatory energy exchange between the qubit and the cavity

- tune flux such that transmission-frequency difference is 88 MHz → 
qubit-qubit coupling negligible

Apply drive pulse (RF) at qubit transmission frequency; measure cavity 
transmission
→ ability of simultaneous read-out of both qubits

- deduction of relaxation times and coherence times for both qubits
→ 78 ns, 120 ns for qubit-1 & 120 ns, 160 ns for qubit-2
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Multiplexed Control and Read-out

- Apply RF pulse at both of the qubit resonant frequencies; 
measure the pulse of resonator frequency

- Simultaneous read-out of the both qubits, by measuring 
cavity phase shift

difference in cavity frequency shifts of the two qubits result in 
distinguishment of four states (especially red and green)
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Off-Resonant Stark Shift

1) Qubits initially detuned by 80 Mhz
2) Pi-pulse applied → One qubit excited
3) Off-resonant Stark drive applied → 

Qubits brought to resonance for delta-t

❏ qubit frequencies pushed into 
resonance → Avoided Crossing

❏ transfer of state of qubits from one to 
other (coherent oscillation)
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▪ Cavity bus enables coherent, non-local coupling between qubits → can be 
extended to more qubits → promising architecture for SC quantum circuit

▪ Virtual photons avoid cavity loss
▪ Tuning via magnetic flux control of Josephson junction
▪ Fast control enables state switching
▪ Cavity used for multiplexed readout and control
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Conclusion Leon

Leon Stolpmann & Efe Büyüközer 20.03.2017



||

Outlook
Next week: Implementation of two-qubit algorithms (Deutsch-Josza, Grover 
search) on cavity bus SC circuit architecture [4]
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Thank you for your attention!
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