Color Centers in Diamond

Slides and material courtesy of: Joerg Wrachtrup, Ronald Hanson, Lilly Childress, and Christian Degen as indicated
Reviews:

The Dopants

- Standard diamond lattice
- TR12 (interstitial Carbon)
 - PRB 72, 035214 2005
- NV (Nitrogen, Vacancy)
- NE8b (Nickel, Nitrogen)

6C
- Carbon
- 4 valence electrons
- sp3 hybridization

7N
- Nitrogen
- 5 valence electrons

Slide material: Joerg Wrachtrup, Stuttgart
Level Scheme of Color Centers

Properties:
- Large band gap $E_g = 5.4 \text{ eV}$
- Defects form inter-gap states

Optical transition

Fluorescence k_{21}

1

2

CB

VB

Slide material: Joerg Wrachtrup, Stuttgart
Shielding by the Diamond Lattice Provides Photostability

Slide material: Joerg Wrachtrup, Stuttgart
Level Structure of Color Centers

- Electron spin states are spectroscopically resolvable
- Defect behaves as a single atom, trapped in the diamond lattice
- Level structure similar to trapped ions or atoms
 - Diamond provides a solid state ion trap
 - Experimental power similar to trapped particles, but much easier to transform into certain applications, e.g. sensing and quantum networks
The NV Center

- Joint defect consisting of
 - Vacancy
 - Neighboring substitutional N
- Negatively charged (NV⁻)
- Six electron (= two hole) system

\[
\begin{align*}
\text{3E} & \quad \text{637nm} \\
\text{3A} & \quad 1.95 \text{ eV} \\
& \quad 470 \text{ THz} \\
& \quad 2.87 \text{ GHz}
\end{align*}
\]
The NV Center

Features:

• Initialization: Optical spin polarization of the ground state («Laser cooling»)

• Coherence: Narrow lines, $T_2 = 1$ ms, linewidth of ground state levels 1 kHz.

• Readout: Optical detection of the spin state
The NV Center

Features:

- **Initialization:**
 Optical spin polarization of the ground state («Laser cooling»)

- **Coherence:**
 Narrow lines, $T_2 = 1$ ms, linewidth of ground state levels 1 kHz.

- **Readout:**
 Optical detection of the spin state
Experimental Setup for Optical Spin Readout

Confocal microscope with microwave access

Image of implanted diamond

Photon count rate (Hz)

Slide material: Joerg Wrachtrup, Stuttgart
Wiring up NV Centers

CVD diamonds grown by Element6

10µm
deterministically placed silicon immersion lens (SIL)

dc Stark tuning:

high-fidelity spin control via magnetic resonance

Slide material: Ronald Hanson, TU Delft
Spin-Resolved Optical Excitation (T < 10K)

Early work by Stuttgart, Harvard, HP Labs
Slide material: Ronald Hanson, TU Delft
Initialization and Readout by Resonant Excitation

Initialization
- Fidelity $> 99.7\%$

Single-Shot Readout
- At the time at TU Delft: best fidelity $F \approx 98\%$
- $m_s=0$ \(<n> = 0.06 \)
- $m_s=\pm 1$ \(<n> = 8.5 \)

Slide material: Ronald Hanson, TU Delft
Optically Detected Magnetic Resonance

Experimental Sequence:
• Set magnetic field
• Initialize optically
• Apply microwave with controlled frequency and amplitude
• Read out optically

\[|0\rangle \quad |\pm 1\rangle \quad |1\rangle \quad |+1\rangle \]

\[2\gamma B \]

\[8.3 \text{ mT} \]

\[5.8 \text{ mT} \]

\[2.8 \text{ mT} \]

\[B = 0 \]

\[\gamma = 28 \text{ GHz/T} \]

Slide material: Christian Degen, ETHZ
Manipulating a Single Spin

Experimental sequence:

- Pulsed sequence consisting of laser cooling, spin manipulation by pulsed microwaves and detection
- Signal is <1photon/repetition => many repetitions
- Similar to ion trap, but experimentally easier
Features:

- **Initialization:**
 Optical spin polarization of the ground state («Laser cooling»)

- **Coherence:**
 Narrow lines, $T_2 = 1 \text{ ms}$, linewidth of ground state levels 1 kHz.

- **Readout:**
 Optical detection of the spin state

- **Single qubit gates:**
 Microwave pulses
Three Approaches to Coupling NV Centers

<table>
<thead>
<tr>
<th>Photons</th>
<th>Magnetic dipolar coupling</th>
<th>Use nuclear spin qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirac, Zoller, Lukin `06</td>
<td>• Magnetic dipoles $d_{\text{coherent}} \propto \sqrt[3]{T_2}$</td>
<td>• Couple NV to surrounding nuclei</td>
</tr>
<tr>
<td>• Proper levels and transitions Manson, Hemmer, Santori</td>
<td></td>
<td>• Couple nuclei via NV</td>
</tr>
<tr>
<td>• Transfer limited photons: Batalov et al. PRL 08</td>
<td></td>
<td>• Read out single nuclei</td>
</tr>
<tr>
<td>• But: bad coupling efficiency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slide material: Joerg Wrachtrup, Stuttgart
Coupling by Dipolar Interaction

ground state energy levels:

| 1⟩
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NV B</td>
<td></td>
</tr>
</tbody>
</table>

| 0⟩
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NV A</td>
<td></td>
</tr>
</tbody>
</table>

Idea:

- NV B interacts with the magnetic dipole of the electron spin of NV A
- Depending on the state NV A, NV B has another resonance frequency
Spin Hamiltonian: Coupled Spins

\[\mathcal{H}_J = \hbar \sum_{i<j}^{n} 2\pi J_{ij} I_i^z I_j^z \]

Typical values for \(J \) depending on distance between spins:
- from kHz up to few 10 MHz for electron spins
- up to few 100 Hz for nuclear spins

\(J > 0 \): antiferro mag.
\(J < 0 \): ferro-mag.

Example with 5 nuclear spins:
Magnetic Dipole Coupled Spin Arrays

Single spin readout

Coherent interaction
Length scale ~ some10 nm,

Coupling vs. distance:

- Distance dependence of dipole coupling scales as d^{-3}

STED on NV: 10nm resolution: Hell et al., Nat. Phot. (2009)

Slide material: Joerg Wrachtrup, Stuttgart
Take Pure (CVD) Diamond and Implant Nitrogen!

*N+ ions, 2MeV

Surface

1.1µm depth

~ 200 nm FWHM

Success chance 1% to have two coherently interacting dimers

*Element Six Ltd., UK

Annealing at 900° C

10^3 N 10^4 N 10^5 N

10µm

Andreas Wallraff, Quantum Device Lab | 6-Apr-17 | 57
Two Defect Centers

Electron spin ground state:

\[|0\rangle \]

\[|+1\rangle \]

\[|-1\rangle \]
Dipolar Coupling: Switching of Spin B

\[|0\rangle \rightarrow \pi/2 \rightarrow |0\rangle \rightarrow \pi/2 \rightarrow |+1\rangle \]

Initial state $F \geq 85\%$

Switchable interaction! Coupling between defect: 0,5,10,20 kHz
Controlled-NOT for Spin-Spin Coupling

Before

\begin{align*}
|0\rangle & \\
|0\rangle + |1\rangle & \frac{\sqrt{2}}{}
\end{align*}

After

\begin{align*}
|0\rangle & \\
|0\rangle + i|1\rangle & \sqrt{2}
\end{align*}

if spin B is \(\uparrow\)

\begin{align*}
Y_{90}^A & \\
\text{Delay} & \frac{1}{2}J_{AB}
\end{align*}

different rotation direction depending on control bit

time

Andreas Wallraff, Quantum Device Lab | 6-Apr-17 | 62
Bell State: Density Matrix Tomography

$$\Phi_+ = \frac{1}{\sqrt{2}}(|+\rangle + |–\rangle)$$

Fidelity Φ_+: 0.67 (theoretically: 0.9)
Three Approaches to Coupling NV Centers

<table>
<thead>
<tr>
<th>Photons</th>
<th>Magnetic dipolar coupling</th>
<th>Use nuclear spin qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirac, Zoller, Lukin `06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| • Proper levels and transitions
 Manson, Hemmer, Santori | • Magnetic dipoles
 \(d_{\text{coherent}} \propto \sqrt[3]{T_2} \) | • Couple NV to surrounding nuclei |
| • Transfer limited photons:
 Batalov et al. PRL 08 | | • Couple nuclei via NV |
| • But: bad coupling efficiency | | • Read out single nuclei |
Coupling Nearby 13C Nuclei

- 12C has no nuclear spin ($I = 0$) and magnetic moment
- 13C nuclear spins ($I = \frac{1}{2}$, 1.1% abundance) create magnetic field at NV
- CNOT gate is implemented by selective microwave transition (flip nucleus if other nucleus is in $|0\rangle$)

Splitting of electron spin spectrum:

- Flip NV conditioned on nuclear state
- Flip nuclei conditioned on NV and nuclear state
Creation of Entangled States

- Creation of entangled states possible
 \[|00\rangle \mp |11\rangle \]
 P. Neumann et al., Science \textbf{320}, 1326 (2008)
- Scaling up to four nuclear spins straightforward
- Combination of electron and nuclear spin states for quantum register
- Scaling to 10-20 spins presumably possible

Flip NV conditioned on nuclear state

Flip nuclei conditioned on NV and nuclear state
Different development: QND readout of nuclear spins

Readout of single quantum systems

• Standard readout
 • <1 photon per run limited by photon shot noise (at best)
 • Example: fluorescence detection of single NV

• Single shot readout
 • determine spin state in a single run but destroy the system or its quantum state
 • requires >1 photon per run limited by quantum shot noise
 • Example: Photon detection in Photomultiplier

• Quantum non demolition (QND) readout
 • >1 photon per run and preservation of the system and its spin state
 • Projective measurement
 • Example: Microwave photons in circuit QED
QND Readout of a Single Nuclear Spin

-1_e (dark)
0_e (bright)

|0_n⟩, |1_n⟩

-1_e <-> |1_e⟩

ESR π

fluorescence intensity (a.u.)

 correlate n- and e-spin
measure e-spin

n-spin state |Ψ⟩
esr π laser
time

Slide material: Joerg Wrachtrup, Stuttgart
Observing Flips of a Single Nuclear Spin

Repetitive QND measurements reveal quantum jumps of a single nuclear spin (in diamond at room temperature)

Fidelity of Spin State Detection

- Two almost perfect Poissonians
- Threshold for state discrimination
 - Fidelity from overlap 99%
 - Fidelity to detect given state 92%
Three Approaches to Coupling NV Centers

<table>
<thead>
<tr>
<th>Photons</th>
<th>Magnetic dipolar coupling</th>
<th>Use nuclear spin qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Photons**
 - Proper levels and transitions
 - Transfer limited photons: Batalov et al. PRL 08
 - But: bad coupling efficiency

- **Magnetic dipolar coupling**
 - Magnetic dipoles
 - \(d_{\text{coherent}} \propto \frac{3}{\sqrt{T_2}} \)

- **Use nuclear spin qubits**
 - Couple NV to surrounding nuclei
 - Couple nuclei via NV
 - Read out single nuclei

Slide material: Joerg Wrachtrup, Stuttgart