Readout of SC qubits

Cavity Quantum Electordynamics

 Interaction between atoms and the quantized electromagnetic modes inside a cavity

- Decay rate κ
- Coupling strength g
- Two level system with spontaneous decay rate γ

Cavity Quantum Electordynamics

 Interaction between atoms and the quantized electromagnetic modes inside a cavity

Applications

- High fidelity dispersive read-out
- Coupling qubits and realizing 2-qubit gates

Tuning Frequency

Cooper pair box

- Acting as a two level system
- Level separation $E_{\rm a} = \hbar \omega_{\rm a} = \sqrt{E_{\rm el}^2 + E_{\rm J}^2}$

coupled capacitively to a single mode of the electromagnetic field of a transmission line resonator with resonance frequency ω_{r}

$$\omega_{1,2} = \omega_{1,2}^{max} \sqrt{|\cos(\pi\Phi/\Phi_0)|}$$

in situ tuning of the transition frequency of the qubits

Tuning Frequency

Readout

For $\omega_r = \omega_a$:

Jaynes-Cumming Hamiltonian:

$$H = \hbar \omega_r \left(a^\dagger a + \frac{1}{2} \right) + \hbar \omega_a \sigma^z + \hbar g (a^\dagger \sigma^- + a \sigma^+)$$
 Quantized field qubit coupling

What happens in the limit of large detuning? $|\Delta| = |\omega_a - \omega_r| >> g$

Readout

Jaynes-Cumming Hamiltonian:

$$H = \hbar\omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar\omega_a}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + a \sigma^+)$$

Unitary transformation

$$ilde{H} = UHU^\dagger$$
 with $U = \exp{rac{g}{\Delta}(a\sigma^+ - a^\dagger\sigma^-)}$ and $\Delta = \omega_a - \omega_r$

Results in dispersive approximation up to 2nd order in g

$$\tilde{H} \approx \hbar \left(\omega_r + \frac{g^2}{\Delta}\sigma_z\right)a^{\dagger}a + \frac{1}{2}\hbar \left(\omega_a + \frac{g^2}{\Delta}\right)\sigma_z$$

Readout

Jaynes-Cumming Hamiltonian

$$H \approx \hbar \left(\omega_r + \frac{g^2}{\Delta}\sigma_z\right) a^{\dagger}a + \frac{1}{2}\hbar \left(\omega_a + \frac{g^2}{\Delta}\right)\sigma_z$$

Cavity frequency shift

- Dispersive Shift of $\pm g^2/\Delta$
- → Cooper pair box pulls the cavity frequency depending on the state of the qubit
- Rabi splitting

Resonant Regime

Experiment

Nonresonant (dispersive) regime -> Qubit and resonator "uncoupled"

→ Quantum nondemolition measurement

No transition induced between ground and excited state

Rabi oscillations:

- Two level system $\{|1\rangle,|2\rangle\}$ in an oscillating field with a frequency ω near the transition frequency ω_{21}
- For $\omega = \omega_{21}$ the population density oscillates with the **Rabi frequency** Ω $P_1(t) = \cos^2(\Omega t/2), \quad P_2(t) = \sin^2(\Omega t/2),$
- For $\omega = \omega_{21} \Delta$ the Rabi frequency changes as $\Omega' = (\Omega^2 + \Delta^2)^{1/2}$ $P_2(t) = (\Omega^2/\Omega'^2) \sin^2(\Omega' t/2)$,

Here: $\Omega = 2\pi v_{Rabi} = 2\sqrt{n_s}g$

n_s number of photons, g coupling

Controlling the qubit:

Microwave pulses with frequency $\omega_s \sim \omega_a$ Induce Rabi-oscillations Shape of pulse given by V_p

Measuring:

Microwave with frequency $\omega_{RF} \sim \omega_r$ Mixed and amplified with frequency ω_{LO} Calculate population from phase shift For $\omega_{RF} = \omega_r$ the population density is encoded in the phase shift ϕ in the measured signal

Calibrate meter:

- 1. Maximize detuning $\Delta \rightarrow \text{interaction } \frac{g^2}{\Delta} \rightarrow 0$ define as $\phi = 0$
- 2. System in ground state $|\downarrow\rangle$
- 3. Detuning $\Delta/2\pi \approx -1.1$ GHz corresponding to maximum Josephson energy E_J

$$\rightarrow \phi_{|\downarrow\rangle}$$

4. Long microwave pulse $\rightarrow P_{|\downarrow\rangle} = P_{|\uparrow\rangle} = 1/2$ measure, expect $\phi = 0$ $\rightarrow \phi_{|\uparrow\rangle} = -\phi_{|\bot\rangle}$

Single shot measurements:

One short pulse

Color density plot

blue: measured data, red: prediction

Contrast
$$C = \frac{\varphi_{max} - \varphi_{min}}{\varphi_{|\uparrow\rangle} - \varphi_{|\downarrow\rangle}} \sim 85\%$$

Pulse duration much smaller than energy relaxation time

Calculate population density from normalized dot product between ϕ and prediction

Visibility 95 ± 6% (max. achieved population density)

- (a) Decay over pulse length of 100ns very small→ visible Rabi oscillations
- (b) Measured Rabi frequency v_{Rabi} vs. pulse amplitude ϵ_s (blue dots) and linear fit

$$v_{\mathrm{Rabi}} = \sqrt{n_{\mathrm{s}}} g/\pi$$

Ramsey experiment:

Two $\pi/2$ -pulses seperated by a longer time T For a hard pulse and detuning Δ : $P(T,\Delta) = \cos^2(T \Delta/2)$ The oscillating pattern is called **Ramsey fringes**

Here: Used to measure the coherence time of the Cooper pair box Measurement beam only after second pulse to avoid dephasing

- a) Ramsey fringes oscillate with detuning frequency $\delta_{a,s} = \omega_a \omega_s$ Long coherence time $T_2 \sim 500$ ns qubit phase quality factor
 - $Q_{\varphi} = T_2 \omega_a/2$
- b) Linear dependence of v_{Ramsey} on detuning $\delta_{\text{a,s}}$

Can be used to measure qubit transition frequency

$$\omega_a = \omega_s + 2\pi v_{Ramsey}$$