Some Extra Reading on Topological Quantum Computation

Review Articles:

- Nayak, Chetan; Simon, Steven H.; Stern, Ady; et al., Non-Abelian anyons and topological quantum computation, *REVIEWS OF MODERN PHYSICS* 80, 1083-1159 (2008)
- Alicea, Jason, New directions in the pursuit of Majorana fermions in solid state systems, REPORTS ON PROGRESS IN PHYSICS **75**, 076501 (2012)
- Ananda Roy, David P. DiVincenzo, Topological Quantum Computing, arXiv:1701.05052 (2017)

Original Research:

- Sau, Jay D.; Lutchyn, Roman M.; Tewari, Sumanta; et al., Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures, PHYSICAL REVIEW LETTERS 104, 040502 (2010)
- Jason Alicea et al., Non-Abelian statistics and topological quantum information processing in 1D wire networks, *Nature Physics* **7**, 412–417 (2011)
- Mourik, V.; Zuo, K.; Frolov, S. M.; et al., Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices, SCIENCE 336 6084, 1003 (2012)

Lecture 9, April 26, 2018

This week:

- Semiconductor quantum dots for QIP
 - Introduction to QDs
 - Single spins for qubits
 - Initialization
 - Read-Out
 - Single qubit gates

Book on basics:

 Thomas Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, Oxford, 2010.

Introductory Review Articles:

- R. Hanson, L. P. Kouwenhoven, J. R. Petta et al., Spins in few-electron quantum dots, *Reviews of Modern Physics* 79, 1217 (2007)
- R. Hanson, & D. D. Awschalom, Coherent manipulation of single spins in semiconductors, *Nature* 453, 1043 (2008)

Electrically Controlled and Measured Quantum Dots

A small semiconducting (or metallic) island where electrons are confined, giving a discrete level spectrum

- Coupled via tunnel barriers to source and drain reservoirs
- Coupled capacitively to gate electrode, to control # of electrons

Spin Qubits in Quantum Dots

Loss & DiVincenzo, *PRA* **57**, 120 (1998) Vandersypen *et al., Proc. MQC02* (quant-ph/0207059)

Initialization	1-electron, low T, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$	
Read-out	convert spin to charge	
	then measure charge	
FOD		in field
ESK	$H_{\rm RF} \sim \sum A_i(t) \cos(\omega_i t)$	σ _{xi}
SWAP	exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$	
Coherence	long relaxation time T_1 long coherence time T_2	

Slides and material courtesy of Lieven Vandersypen, TU Delft

Electrons in Atoms, Quantum Dots

Schrödinger:

electrons in confined systems occupy quantized energy levels

Particle in a box:

$$E_n = \frac{\hbar^2}{2m} \left(\frac{\pi n}{L}\right)^2, \quad n = 1, 2, 3 \dots$$
 QDs: 0.1 meV

Atoms: 10 eV

1 meV ~ 250 GHz

Pauli:

each level can be occupied with one spin-up electron and one spin-down electron

ETH zürich

The Hydrogen Atom

Quantized energy levels in the hydrogen atom

$$E_n = -\frac{E_{\rm Ry}}{n^2}, \quad n = 1, 2, 3 \dots$$

$$E_{\rm Ry} = \frac{2m}{\hbar^2} \left(\frac{e^2}{8\pi\epsilon_0}\right)^2$$

Atoms: 13.6 eV GaAs: 6 meV

$$a_{\rm B} = \frac{\hbar^2}{2m} \left(\frac{8\pi\epsilon_0}{e^2}\right)$$

Atoms: 0.53 Å GaAs: 10 nm

Pauli:

each level can be occupied with one spin-up electron and one spin-down electron

Electrons in Atoms, Quantum Dots

electrons in confined systems interact via Coulomb repulsion

Electrostatic/charging energy

$$E_{\rm C} = \frac{Q^2}{2C} = \frac{e^2 N^2}{2C}, \quad N \text{ (large) integer} \qquad \begin{array}{l} \text{QDs: 1 meV} \\ \text{Atoms: 10 eV} \end{array}$$
$$C = 4\pi\varepsilon\varepsilon_0 r \quad \text{(Sphere)} \end{aligned}$$
$$E_{\rm C} = \frac{e^2 N^2}{8\pi\epsilon\epsilon_0 r}, \quad N \text{ (large) integer} \end{aligned}$$

Slides and material courtesy of Thomas Ihn, ETH Zurich

Atoms vs. Quantum Dots

	Atom	Quantum dot
Confinement	r ⁻¹ ,strong, rigid, hard to tune	<i>r</i> ², soft, parabolic, tunable
Symmetry	perfect, given by nature	never perfect, hard to achieve
Electrical addressing	hard to achieve	well suitable tunable coupling
Optical addressing	well suitable	well suitable
Coupling to	thermal photons,	photons, phonons, other electrons

Both systems give access to single electron/spin manipulation

Slides and material courtesy of Thomas Ihn, ETH Zurich

Lecture 10, May 3, 2018

This week:

- Semiconductor quantum dots for QIP
 - Introduction to QDs
 - Single spins for qubits
 - Initialization
 - Read-Out
 - Single qubit gates

Book on basics:

 Thomas Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, Oxford, 2010.

Introductory Review Articles:

- R. Hanson, L. P. Kouwenhoven, J. R. Petta et al., Spins in few-electron quantum dots, *Reviews of Modern Physics* 79, 1217 (2007)
- R. Hanson, & D. D. Awschalom, Coherent manipulation of single spins in semiconductors, *Nature* 453, 1043 (2008)

Examples of Quantum Dots

Slides and material courtesy of Lieven Vandersypen, TU Delft

Electrostatically Defined Quantum Dots

Slides and material courtesy of Lieven Vandersypen, TU Delft http://vandersypenlab.tudelft.nl/

- Electrically measured (contact to 2DEG)
- Electrically controlled number of electrons
- Electrically controlled tunnel barriers

Coulomb Blockade

Slides and material courtesy of Thomas Ihn, ETH Zurich

Tunneling from Discrete Levels

 α -decay described by tunneling from quantized levels:

G. Gamov, Z. Phys. **51**, 204 (1928).

Slides and material courtesy of Thomas Ihn, ETH Zurich

Transport Through Quantum Dot - Coulomb Blockade

Slides and material courtesy of Lieven Vandersypen, TU Delft

A Quantum Point Contact (QPC) as a Charge Detector

The Last Electron

Few-Electron Double Dot Design

Elzerman *et al., Phys. Rev. B* **67,** 161308(R) (2003) Ciorga *et al., Phys. Rev. B* **61**, R16315(R) (2000) Field *et al, Phys. Rev. Lett.* **70,** 1311 (1993) Sprinzak *et al Phys. Rev. Lett.* **88,** 176805 (2002) Slides and material courtesy of Lieven Vandersypen, TU Delft

Few-Electron Double Dot Measured via QPC

- Double dot can be emptied
- QPC can detect all charge transitions

J.M. Elzerman *et al., Phys. Rev. B* **67**, R161308 (2003) Slides and material courtesy of Lieven Vandersypen, TU Delft

Double Dot Charge Stability Diagram

3-May-18

19

Double Dot Current

Transport measurements:

• Charging diagrams

dot properties:

- many electron regime
- large charging energy
- consider two-level approx.

T. Frey et al., PRL 108, 046807 (2012)

ETH zürich

Double Dot Current

Transport measurements:

• Charging diagrams

dot properties:

- many electron regime
- large charging energy
- consider two-level approx.

T. Frey et al., PRL 108, 046807 (2012)

Single Electron Tunneling Through Two Dots in Series

Few-electron double dot:

Transport current through dots

J. Elzerman *et al., Phys. Rev. B* **67**, 161308(R) (2003) Slides and material courtesy of Lieven Vandersypen, TU Delft

ETH zürich

Energy Level Spectroscopy at *B* = 0

J. Elzerman *et al., Phys. Rev. B* **67**, 161308(R) (2003) Slides and material courtesy of Lieven Vandersypen, TU Delft

Single Electron Zeeman Splitting in $B_{//}$

Hanson et al, *Phys. Rev. Lett.* **91**, 196802 (2003) Also: Potok et al, *Phys. Rev. Lett.* **91**, 016802 (2003) Slides and material courtesy of Lieven Vandersypen, TU Delft

Spin Qubits in Quantum Dots

Loss & DiVincenzo, *PRA* **57**, 120 (1998) Vandersypen *et al., Proc. MQC02* (quant-ph/0207059)

Initialization	1-electron, low T, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$	
Read-out	convert spin to charge then measure charge	
ESR	pulsed microwave magnet $H_{RF} \sim \sum A_i(t) \cos(\omega_i t)$	ic field σ _{xi}
SWAP	exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$	
Coherence	long relaxation time T_1 long coherence time T_2	

Slides and material courtesy of Lieven Vandersypen, TU Delft

Initialization of a Single Electron Spin

Method 1: spin-selective tunneling

Method 2: relaxation to ground state

Spin Qubits in Quantum Dots

Loss & DiVincenzo, *PRA* 1998 Vandersypen et al., *Proc. MQC02* (quant-ph/0207059)

Slides and material courtesy of Lieven Vandersypen, TU Delft

Spin Read-Out Principle: Convert Spin to Charge

ETH zürich

Observation of individual tunnel events

Shortest steps ~ 8 μs

Vandersypen *et al., App. Phys. Lett.* **85**, 4394 (2004) Schlesser*et al.*, (2004) Slides and material courtesy of Lieven Vandersypen, TU Delft

tunnel rate with reduced barrier width

Pulse-Induced Tunneling

Slides and material courtesy of Lieven Vandersypen, TU Delft

Spin Read-Out Procedure & Measurement Result

Inspiration: Fujisawa *et al.*, *Nature* **419**, 279 (2002) Elzerman *et al.*, *Nature* **430**, 431 (2004) Slides and material courtesy of Lieven Vandersypen, TU Delft

Electron Spin Resonance (ESR) Detection in a Single Dot

ESR lifts Coulomb blockade

Microwave induced spin flip raises (Zeeman) energy of electron and allows it to tunnel out to the right (drain) and new electron to tunnel in from the left (source) creating current.

Engel & Loss, *Phys. Rev. Lett.* **86**, 4648 (2001) Slides and material courtesy of Lieven Vandersypen, TU Delft

Spin Qubits in Quantum Dots

Loss & DiVincenzo, *PRA* 1998 Vandersypen et al., *Proc. MQC02* (quant-ph/0207059)

Initialization	1-electron, low T, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$	
Read-out	convert spin to charge then measure charge	
ESR	pulsed microwave magnet $H_{RF} \sim \sum A_i(t) \cos(\omega_i t)$	ic field σ _{xi}
SWAP	exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$	
Coherence	long relaxation time T_1 long coherence time T_2	

Slides and material courtesy of Lieven Vandersypen, TU Delft

Double Dot in Spin Blockade for ESR Detection

Tunneling of spin up from left to right is blockaded as it can only form triplet state (both spins up, S=1).

T: Triplet state

S: Singlet state

Advantage: inter-dot transition instead of dot-lead transition

- Insensitive to temperature
 ⇒ can use B < 100 mT, f < 500 MHz
- Insensitive to electric fields

ESR spin flip (to down) allows for formation of lower energy singlet state (up and down S=0), lifts spin blockade and allows for tunneling from left to right creating current

Combine ESR detection: Engel & Loss, *Phys. Rev. Lett.* **86**, 4648 (2001) with spin blockade: Ono & Tarucha, *Science* **297**, 1313 (2002) Slides and material courtesy of Lieven Vandersypen, TU Delft

ETH zürich

ESR Device Design

- Gates ~ 30 nm thick gold
- Dielectric ~ 100 nm calixerene
- Stripline ~ 400 nm thick gold
- Expected AC current ~ 1 mA
- Expected AC field ~ 1 mT
- Maximize B₁, minimize E₁

ESR Spin State Spectroscopy

Slides and material courtesy of Lieven Vandersypen, TU Delft

Coherent Manipulation: Pulse Scheme

- Initialization in mixture of $\uparrow\uparrow$ and $\downarrow\downarrow$
- Measurement switched off (by pulsing to Coulomb blockade) during manipulation
- Read-out: projection on $\{\uparrow\uparrow,\downarrow\downarrow\}$ vs. $\{\uparrow\downarrow,\downarrow\uparrow\}$ basis

Koppens *et al., Nature* **442**, 766 (2006) Slides and material courtesy of Lieven Vandersypen, TU Delft

Coherent Rotations of Single Electron Spin

- Oscillations visible up to 1 µs
- Decay non exponential
 - slow nuclear dynamics (non-Markovian bath)
- Agreement with simple Hamiltonian
- Taking into account different resonance conditions both dots

Koppens *et al., Nature* **442**, 766 (2006) Slides and material courtesy of Lieven Vandersypen, TU Delft

- Oscillation frequency ~ B_{AC}
 - clear signature of Rabi oscillations
- π/2 pulse in 25 ns
- max $B_1 = B_{AC} / 2 = 1.9 \text{ mT}$
- B_{N,z}= 1.3 mT
 - estimated fidelity ~73%

Spin Qubits in Quantum Dots

Loss & DiVincenzo, *PRA* 1998 Vandersypen et al., *Proc. MQC02* (quant-ph/0207059)

Initialization	1-electron, low T, high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$	
Read-out	convert spin to charge then measure charge	
ESR	pulsed microwave magnet $H_{RF} \sim \sum A_i(t) \cos(\omega_i t)$	ic field σ _{xi}
SWAP	exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$	
Coherence	long relaxation time T_1 long coherence time T_2	

Slides and material courtesy of Lieven Vandersypen, TU Delft

Coherent Exchange of Two Spins

Spin exchange as in NMR

- free evolution under exchange Hamiltonian
- swap^{1/2} in as little as 180 ps
- three oscillations visible, independent of J

Petta *et al., Science* **309**, 2180 (2005) Slides and material courtesy of Lieven Vandersypen, TU Delft

Spin Qubits in Quantum Dots

Loss & DiVincenzo, *PRA* 1998 Vandersypen et al., *Proc. MQC02* (quant-ph/0207059)

Initialization	1-electron, low <i>T</i> , high B_0 $H_0 \sim \Sigma \omega_i \sigma_{zi}$
Read-out	convert spin to charge then measure charge
ESR	pulsed microwave magnetic field $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$
SWAP	exchange interaction $H_J \sim \sum J_{ij}(t) \sigma_i \cdot \sigma_j$
Coherence	long relaxation time T_1 long coherence time T_2

Slides and material courtesy of Lieven Vandersypen, TU Delft

Summary Gate-Defined Quantum Dots

Semiconductor quantum dots for QIP

Fulfill all DiVincenzo Criteria

Challenges

- Use materials with long spin lifetimes (Si, graphene) and low charge noise
- Scaling to larger number of qubits

Current promising developments

 Circuit QED for quantum dots (see additional slides)

Book on basics:

 Thomas Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, Oxford, 2010.

Introductory Review Articles:

- R. Hanson, L. P. Kouwenhoven, J. R. Petta et al., Spins in few-electron quantum dots, *Reviews of Modern Physics* 79, 1217 (2007)
- R. Hanson, & D. D. Awschalom, Coherent manipulation of single spins in semiconductors, *Nature* 453, 1043 (2008)

Strong Coupling Cavity QED with Semiconductor Quantum Dots Enabled by High Impedance SQUID Array Resonators

<u>A. Stockklauser</u>, <u>P. Scarlino</u>, J. V. Koski, S.Gasparinetti, C. K. Andersen, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin, A. Wallraff (ETH Zurich)

ETH zürich

Double Quantum Dots Created in GaAs Heterostructure

Wafer : C. Reichl, W. Wegscheider

GaAs/AlGaAs Heterostructure

MESA Etching

Ohmic Contacts

Depletion Gates

High Impedance SQUID Array Resonator

Increase dipole coupling

 $g \propto d \cdot V_0^{\rm rms} \propto \omega_{\rm r} \sqrt{Z_{\rm r}}$

- Maximize impedance $Z_r = \sqrt{L_r/C_r}$
- Josephson junction as high impedance circuit elements

 $L_{\rm J} = \frac{\Phi_0}{2\pi I_{\rm c}\cos\varphi_0}$

ightarrow Resonator design based on SQUID array

Altimiras et al., APL **103**, 212601 (2013). Masluk et al., PRL **109**, 137002 (2012). Castellanos-Beltran, Lehnert, APL **91**, 083509 (2007).

Josephson junctions

Integrated GaAs DQD with SQUID Array Resonator in Hybrid Device

32 SQUID array resonator

- 200 µm long
- Al based
- Dolan bridge technique

Gate defined GaAs DQD

- On small mesa
- Resonator coupling gate not DC biased

Microwave reflectometry measurement

- Josephson parametric amplifier
- Custom FPGA electronics

Stockklauser, Scarlino et al., PRX7, 011030 (2017)

Characteristics of SQUID Array Resonator

SQUID inductance

$$L_{\rm J}^{\rm S}(\Phi_{\rm m}) \propto |\cos\left(\frac{\pi\Phi_{\rm m}}{\Phi_0}\right)|^{-1}$$

- → Flux-tunable inductance, impedance and resonance frequency
 - $v_r = 4 6 \text{ GHz}$
 - $Z_{\rm r} = 1.3 1.8 \, {\rm k}\Omega$

 $\rightarrow \sqrt{Z_{\rm r}/50~\Omega} \sim 6$

• $(\kappa_{\text{int}}, \kappa_{\text{ext}}, \kappa)/2\pi = (10.0, 2.3, 12.3)$ MHz

Stockklauser, Scarlino et al., PRX7, 011030 (2017)

Dispersive Interaction

Strong Resonant Interaction

First (joint with Petta at Princeton) observation of strong coupling cavity QED ($g > \kappa, \gamma$) in gate defined semiconductor QDs:

> $[g, \gamma_1, \gamma_{\varphi}, \kappa]/(2\pi)$ = (145, 60, 38,12) MHz

Enables:

- QND qubit readout
- Non-local qubit/qubit coupling
- Charge qubit to photon conversion
- Potentially spin qubit to photon conversion
- Essential for quantum information
 Stockklauser, Scarlino *et al.*, *PRX* 7, 011030 (2017)
 processing with semiconductors
 Mi *et al.*, *Science* 355, 156 (2017)

Makes many/all features of circuit QED accessible to research and development on semiconductor nano-structures

Two Approaches to Qubit Spectroscopy

Drive Strength Dependence of Qubit Line-Shape

Two-tone spectroscopy measurement

- Power broadening and saturation with spectroscopy drive strength P_s
- Low power limit reveals coherence

Stockklauser, Scarlino *et al., PRX***7**, 011030 (2017). Inspired by: Schuster *et al. PRL***94**, 123602 (2005). Qubit line width δv_q^2 vs. drive strength P_s

$$\frac{1}{T_2} = 7$$

$$\gamma_2/2\pi = 40 \text{ MHz}$$

- Surprisingly small linewidth for charge states in piezoelectric GaAs
- Even better coherence observed in subsequent experiments
 Andreas Wallraff, Quantum Device Lab | 3-May-18 | 57

Recent Companion Experiments on Strong Coupling

Si\SiGe DQD (dipolar coupling) X. Mi et al., Science 355, 156-158 (2017)

Carbon Nanotube DQD with superconducting leads L. E. Bruhat et al., arXiv:1612.05214

•
$$(\kappa, \gamma)/2\pi \approx (1, 4)$$
 MHz

Conclusion and Perspectives

Strong coupling in semiconductor QDs

Stockklauser, Scarlino *et al., PRX***7**, 011030 (2017). Mi *et al., Science* **355**, 156 (2017)

coherent coupling to other types of qubits

Nature **431**, 162 (2004)

 Time-resolved measurements with dispersive readout

Non-local coherent coupling of multiple DQDs

Bergenfeldt *et al., PRB* **87**, 195427 (2013) Delbecq *et al., Nat. Comm.* **4**, 1400 (2013)