ETH zürich

Experimental Violation of Bell Inequalities

QSIT, Paper presentation

Bell Inequalities (INTERNAL USE ONLY) QSIT, Paper presentation

EPR Paradox: Is the world quantum?

- EPR 1935 Assumption: A measurement reveals a physical property "Local realism"
- EPR: Quantum mechanics not complete
- Later: Hidden local variables as alternative?
- Bell 1965 provided idea for ultimate proof
- Aspect 1982 performed the first measurement

Outline

Introduction, Theory

- EPR Paradox
- Bell inequalities

Loopholes

- Angular correlation, Locality, Detection
- Different setups

Implementation

- Experimental setup
- Results

Conclusion

EPR vs Bell

Bell Inequalities Contradiction Measurement

Bell Inequalities - CHSH version

Correlation coefficient

$$E(\alpha, \beta) = P_{same}(\alpha, \beta) - P_{diff}(\alpha, \beta)$$
$$= P_{++} + P_{--} - P_{+-} - P_{-+}$$

$$\Psi^{-}\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$
$$= \frac{1}{\sqrt{2}} (|DA\rangle - |AD\rangle)$$

 $|\mathsf{H}\rangle = |\mathsf{0}\rangle$

 $|V\rangle = |1\rangle$

Bell signal

$$S = E(a,b) - E(a,b') + E(a',b) + E(a',b') = A(a)B(b) - A(a)B(b') + A(a')B(b) + A(a')B(b) = A(a)(B(b) - B(b')) + A(a')(B(b) + B(b'))$$

Consider only extreme cases:

$$E(a,b) = \int A(a|\lambda) \cdot B(b|\lambda)\rho(\lambda)d\lambda$$

= $A(a|\lambda) \cdot B(b|\lambda)$
= ± 1
hidden variable λ
Regualities (INTERNAL USE ONLY)

Bell Inequalities (INTERNAL USE ONL) QSIT, Paper presentation $|A\rangle$

 $|D\rangle$

b

Bell Inequalities - CHSH version

Correlation coefficient

$$E(\alpha, \beta) = P_{same}(\alpha, \beta) - P_{diff}(\alpha, \beta)$$
$$= P_{++} + P_{--} - P_{+-} - P_{-+}$$

$$\begin{split} \Psi^{-} \rangle &= \frac{1}{\sqrt{2}} \big(|01\rangle - |10\rangle \big) \\ &= \frac{1}{\sqrt{2}} \big(|DA\rangle - |AD\rangle \big) \end{split}$$

Bell signal

$$S = E(a, b) - E(a, b') + E(a', b) + E(a', b')$$

= A(a)B(b) - A(a)B(b') + A(a')B(b) + A(a')B(b)
= A(a)(B(b) - B(b')) + A(a')(B(b) + B(b'))

CLASSICALLY One of the two has to be 0 $|S| \le 2$

QUANTUM MECHANICS

 $\frac{|\text{It depends <u>on</u> A}|}{|S| \le 2\sqrt{2}}$

Bell Inequalities - CHSH version

Correlation coefficient

$$E(\alpha, \beta) = P_{same}(\alpha, \beta) - P_{diff}(\alpha, \beta)$$
$$= P_{++} + P_{--} - P_{+-} - P_{-+}$$

$$\Psi^{-}
angle = rac{1}{\sqrt{2}} (|01
angle - |10
angle) \ = rac{1}{\sqrt{2}} (|DA
angle - |AD
angle)$$

Bell signal S = E(a, b) - E(a, b') + E(a', b) + E(a', b') $E(\alpha, \beta) = \langle \alpha, \beta \rangle$ $= \langle \psi | \alpha \beta | \psi \rangle$ $= \dots$ $= -\cos(\alpha, \beta)$ QUANTUM MECHANICS It depends on A $|S| \le 2\sqrt{2}$

Bell Inequalities Violation Measurement

Principle of measurement setup:

Loopholes

- [...] (the derivation) is based on two <u>assumptions</u>, which, <u>if</u> <u>not met</u>, allow an experiment to return a Bell <u>violation</u> even for a <u>classically</u> predetermined process [...]
- Those assumptions are called Loopholes.
- For **photon** systems: 3 kinds of loopholes
 - Angular correlation loophole (generation)
 - Detection loophole
 - Locality loophole

EHzürich

Angular correlation loophole

- Generation of entangled photons
 - 2 laser excitation of calcium atoms
 - cascade emission of entangled photons
 - poor angular correlation

- Modern experiments
 - generation via parametric down-conversion in non-linear material such as BBO (barium beta bromate)
 - Ioophole closed

Locality loophole

- Measurement time greater than the time it would take the photons pair to communicate information about the state state
- Loophole closed by space-like separation
 - faster detection
 - greater distance between detection locations
 - d > c * t_{meas}

 Latest improvements: random polarization change during measurement

Detection loophole

- Arises due to low detection efficiency of single-photon detectors
 - for early experiments: between 5% and 20%
 - a lot of photons remain undetected

Fair-sampling assumption:

- fraction of detected pairs is representative for the whole ensemble of pairs
- Remains the most important loophole which has not been completely resolved for photonic systems

Various measurement setups

Photon based systems

- Pro: fast travel thus enabling the independent measurement of the 2 quantum systems => locality loophole closed
- Contra: fast and accurate detection not reached yet
- outlook: superconducting nanowire NbN detectors 67% efficiency

Other systems

- i.e.: ions, Josephson junction
- Pro: nearly perfect detection
- Contra: hard to separate the two Qubits
- ongoing research, i.e. separate Josephson junction

esonator

ETH zürich

Alternative measurement setups

- Additional systems:
 - neutrons
 - K Mesons, B Mesons
 - atomic systems

- Loophole-free systems
 - those are often mixed systems
 - take advantage of different systems
 - only "proposals" so far

Violation of Bell's Inequality under Strict Einstein Locality Conditions

Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria (Received 6 August 1998)

- Bell Inequality Violation Measurement with photons
- Main aim: closing locality loophole

Setup: Overview

- Sending entangled photon pairs through single-mode glass fibers to spatially separated regions (400 m)
- Choosing the measurement axes via physical randomnumber generators
- Changing the measurement axes via electro-optic modulators
- Storing the data locally together with the measurement time

Setup: Details

Creation of the photons:

- degenerate type II parametric down-conversion (emits entangled photons with perpendicular polarization)
- BBO crystal (Beta Barium Borate; non-linear crystal), shined at with 400 mW of 351 nm light from argon-ion laser

EHzürich

Setup: Details

Random Number Generation:

- light-emitting diode
- beam splitter
- photomultipliers & electric circuit
- detection window / max. frequency:
 2 ns / 500 MHz
- incl. modulation to uniform distribution:
 10 MHz

Setup: Details

Setting the measurement axes:

- electro-optic modulator: rotation of polarization proportional to the applied voltage
- Frequencies: DC to 30 MHz
- optic axis at 45 degrees to the polarizer ahead
- depending on the random number input: switch between 0 and 45 degrees rotation of polarization

Setup: Details

Detection:

- polarizer beam splitter
- silicon avalanche photodiodes: 10'000 15'000 counts / s, dark count of a few 100 / s
- selection of good inputs (right setup switching time)
- local time-tagged recording of output & switch positions:
 75 ps resolution, 0.5 ns accuracy
- overall dead-time of detection channel: 1 μs

Measurement Results

 $|H\rangle = |0\rangle$ $|A\rangle$ $|V\rangle = |1\rangle$

 $S = -2\sqrt{2}$

QM maximum

 $\mathsf{E}(\mathfrak{a},\mathfrak{b}) = -\frac{\mathsf{I}}{\sqrt{2}}$

 $\mathsf{E}(\mathfrak{a}',\mathfrak{b}) = -\frac{\mathsf{r}}{\sqrt{2}}$

 $\phi=\pi/8$

Measurement Results

- SNR > 100
- coincidence window 6 ns
- visibility of correlations:
 ≈ 97 %
- 14'700 coincidence events in 10s
- Total detection / collection efficiency: 5 %

L. Kraemer, A. Popert, Y. Popoff | 08.05.2015

Results

- Bell inequality violation:
 2.73 ± 0.02
- Total detection / collection efficiency: 5 %
- Loopholes?
 - Detection Loophole: X (5 %)
 - Locality Loophole: √ (1.3 µs vs. ≈ 100 ns)

Summary

- Theoretical Background:
 - EPR Paradox
 - Bell Inequalities
- Loopholes & Physical Systems
- Experimental Implementation:
 - Detailed Setup
 - Bell inequality violation: 2.73 ± 0.02
 - Detection Loophole: X (5 %)
 - Locality Loophole: √ (1.3 µs vs. ≈ 100 ns)

ETH zürich

Thank you for your attention.

Bell Inequalities (INTERNAL USE ONLY) QSIT, Paper presentation

References

- Aspect, A., Grangier, P., Roger, G. Experimental Realization of EPR-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities. Phys. Rev. Lett. 49, 91 (1982)
- Weihs, G., Jennewein, T., Simon, C. et al.
 Violation of Bell inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)
- Ansmann, M., Wang, H., Bialczak, R. C. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504 (2009)
- Susana F. Huelga, Miguel Ferrero, and Emilio Santos Phys. Rev. A 51, 5008 (1995) – Published 1 June 1995
- Edward S. Fry, Thomas Walther, and Shifang Li Phys. Rev. A 52, 4381 – Published 1 December 1995

Setup: Details

Transmission:

- telescope to narrow the beam
- half-wave plate & compensator crystals to correct output to desired state:

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|H\rangle_1|V\rangle_2 + e^{i\phi}|V\rangle_1|H\rangle_2)$$
 with $\phi = \pi$

 manual fiber polarization controllers to correct unitary polarization transformations in fiber

Hg Atom Based Systems

