

Error Correction in Superconducting Circuits

Adrian Beckert Lars Kristiansen

Motivation

- Decoherence/Environmental influences
- Dephasing
- Gate operations and quantum computing need time

EHzürich

Outline

- Theory
 - Classical error correction
 - Quantum error correction
 - Error supresssion factor Λ
- Experiment
 - Setup
 - Measurement procedure
- Results

Classical Repetition Code

Improve error tolerance by storing multiple copies of a bit.

Assumption: independent errors.

Correction method: Majority voting.

Parity information is sufficient.

EHzürich

An Example

Parity Measurement Errors

Correction method does not work for measurement errors.

Another Example

t=0

t=3 All parities identical, no detection events.

t=1 All parities identical, no detection events.

t=4 One parity differs, one detection event.

t=2 Two parities differ, two detection events.

t=5 Two parities differ, two detection events.

EHzürich

Error Connectivity Graph

Quantum Repetition Code

Goal: Make qubits less susceptible to errors by using multiple qubits to store the state.

Bit-flip (X) and phase-flip (Z) errors

Logical states for repetition code with m qubits.

$$|0_{\rm L}\rangle = |0..0\rangle \qquad |1_{\rm L}\rangle = |1..1\rangle$$

*n*th-order fault tolerance is defined to mean that any combination of *n* errors is tolerable. (n < [m/2])

How to measure the parity of qubits?

The $\hat{Z}\hat{Z}$ operator measures the parity of two qubits because

$$\hat{Z}\hat{Z}|00\rangle = +|00\rangle \qquad \hat{Z}\hat{Z}|01\rangle = -|01\rangle \\ \hat{Z}\hat{Z}|11\rangle = +|11\rangle \qquad \hat{Z}\hat{Z}|10\rangle = -|10\rangle$$

Implement this by introducing an ancilla measurement qubit to CNOT gates.

 $|00\rangle$ and $|11\rangle$ give $|0\rangle$ for the ancilla qubit state

 $|01\rangle$ and $|10\rangle$ give $|1\rangle$ or the ancilla qubit state

An example.

Initial state:

 $\left|\Psi\right\rangle = \left(\alpha\left|00\right\rangle_{\mathrm{D}} + \beta\left|11\right\rangle_{\mathrm{D}}\right) \otimes \left|0\right\rangle_{\mathrm{A}}$

Rotate qubit 1 around the x-axis:

Apply the CNOT gates:

 $|\Psi''\rangle = \gamma(\alpha |00\rangle_{\rm D} + \beta |11\rangle_{\rm D}) \otimes |0\rangle_{\rm A} + \delta(\alpha |10\rangle_{\rm D} + \beta |01\rangle_{\rm D}) \otimes |1\rangle_{\rm A}$

 $|\Psi'\rangle = [\gamma(\alpha |00\rangle_{\rm D} + \beta |11\rangle_{\rm D}) + \delta(\alpha |10\rangle_{\rm D} + \beta |01\rangle_{\rm D})] \otimes |0\rangle_{\rm A}$

After measurement:

$$\begin{split} |\Psi\rangle &= (\alpha |00\rangle_{\rm D} + \beta |11\rangle_{\rm D}) \otimes |0\rangle_{\rm A} \\ |\Phi\rangle &= (\alpha |10\rangle_{\rm D} + \beta |01\rangle_{\rm D}) \otimes |1\rangle_{\rm A} \end{split}$$

Correction:

 $|\Psi\rangle = X_1 |\Phi\rangle$

 $10 \rightarrow - Z_1 Z_2$ $1 \rightarrow - Z_1 Z_2$

Parity measurement does not change the state of the data qubits!

Error propagation and identification.

Error supression factor Λ and Fidelity

- A measure of how far below the threshold error rate a system is
- Logical error rate $\varepsilon \propto \frac{1}{\Lambda^{n+1}}$ $\Lambda > 1$ with n-th order fault tolerance n
- The "Fidelity" is a measure of closeness of two quantum states

Setup

Chip architecture - components

Measurement procedure

Decomposition of CNOT gate

Single repetition code implementation

waveform data for 1 cycle

Waveform data for 8 cycles

Logical error rate and Λ

Acknowledgements & References

Acknowledgements

to Dr. Abdulfarrukh Abdumalikov for supervising the presentation

Reference

J. Kelly et al., State preservation by repetitive error detection in a superconducting quantum circuit, Nature **519**, 66-69 (2015)

EHzürich

Final Slide – Questions?

