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How to factor 15 with NMR?
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Goals of this lecture

Survey of NMR quantum computing    

Principles of NMR QCp Q
Techniques for qubit control
State of the art
Future of spins for QIPCFuture of spins for QIPC
Example: factoring 15
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NMR largely satisfies the DiVincenzo criteria

 Qubits: nuclear spins ½  in B0 field   (  and  as 0 and 1)

 Quantum gates: RF pulses and delay timesQuantum gates: RF pulses and delay times

() Input: Boltzman distribution (room temperature)

 Readout: detect spin states with RF coil
1H

 Readout: detect spin states with RF coil

 Coherence times: easily several seconds 13C
ClCl

Cl
Cl
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(Gershenfeld & Chuang 1997, 
Cory, Havel & Fahmi 1997) 



Nuclear spin Hamiltonian
Single spinSingle spin
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Nuclear spin Hamiltonian
Multiple spins

without  
qubit/qubit
c pli gMultiple spins coupling
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qubit level separation

(at 11.7 Tesla)



Hamiltonian with RF field
single-qubit rotationssingle qubit rotations

z x y

typical strength Ix, Iy : up to 100 kHzrotating wave approximation

7Rotating frame Lab frame



Nuclear spin Hamiltonian
Coupled spins J>0: antiferro mag.Coupled spins

coupling term

J f g

J<0: ferro-mag.

Typical values: J up to few 100 Hzyp p

16 configurations

8
solid (dashed) lines are (un)coupled levels



Controlled-NOT in NMR A target bit
B control bit
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Making room temperature spins look cold
   

 (Cool to mK)
 Optical pumping 

Effective pure state
(Gershenfeld&Chuang Science ‘97

warm

p p p g
 DNP, …



(Gershenfeld&Chuang, Science 97, 
Cory, Havel & Fahmi, PNAS ‘97)
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Look exactly like cold spins !
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Effective pure state preparation
(1)  Add up 2N-1 experiments (Knill,Chuang,Laflamme, PRA 1998)

               

+ + =
Later  (2N - 1) / N  experiments (Vandersypen et al., PRL 2000)

prepare equal population (on average) and look at 

(2)  Work in subspace (Gershenfeld&Chuang,  Science 1997)

deviations from equilibrium.
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compute with qubit states that have the same energy 
and thus the same population.



Read-out in NMR |0 |0

|0 |1|0 |1

Phase sensitive detection
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Measurements of single systems versus 
ensemble measurements

|00quantum state |00 + |11

single-shot bitwise |0 and |0 each bit |0 or |1

single-shot “word”wise |00 |00 or |11 QC

|0 and |0bitwise average each bit average 
of |0 and |1 NMR

“word”wise average |00 average of |00 and |11
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adapt algorithms if use ensemble



Quantum state tomography

after X

Look at qubits from different angles

after Yno pulse after X90
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Off-resonance pulses and spin-selectivity

spectral content of a square pulse

off-resonant pulses induce eff. 
 rotation in addition to z rotation in addition to x,y

17

may induce transitions in other 
qubits



Pulse shaping for improved 
i l ti itspin-selectivity

gaussian pulse profile gaussian spectrumgaussian pulse profile gaussian spectrum

less cross-talk
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Missing coupling terms: Swap 

How to couple distant qubits with only nearest neighbor 
physical couplings?

Missing couplings: swap states along qubit network

p y p g

di dSWAP12 = CNOT12 CNOT21 CNOT12 as discussed 
in exercise class

1 2 3 4
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“only” a linear overhead ...



Undesired couplings: refocus
remove effect of coupling during delay times

bi

XB
180 XB

180

opt. 1: act on qubit B

XA
180XA

180 180180

opt. 2: act on qubit A 
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• There exist efficient extensions for arbitrary coupling networks
• Refocusing can also be used to remove unwanted Zeeman terms

opt. 2: act on qubit A 



Composite pulses
Example: Y90X180Y90

corrects for corrects forcorrects for 
under/over-rotation

corrects for 
off-resonance

z z

y
x y

x y
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However: doesn’t work for arbitrary input state
But: there exist composite pulses that work for all input states



Molecule selection

A quantum computer is a known molecule.

 spins 1/2 (1H, 13C, 19F, 15N, ...)

q p
Its desired properties are:

 spins 1/2  ( H, C, F, N, ...)
 long T1’s and T2’s
 heteronuclear, or large chemical shifts

d J li t k ( l k d) good J-coupling network (clock-speed)

 stable, available, soluble, ... required to make 
spi s f sa e spins of same 
type addressable
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Quantum computer molecules (1)
Grover / Deutsch-Jozsa

Cl NH H3

Q. Error correction

red nuclei are used 
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BrF ClCl O-Na+



Quantum computer molecules (2)
Deutsch-Jozsa 7-spin coherence
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The good news

 Quantum computations have been demonstrated in the lab

 A high degree of control was reached, permitting hundreds of 
operations in sequence

 A variety of tools were developed for accurate unitary control 
over multiple coupled qubits
 useful in other quantum computer realizations

 Spins are natural, attractive qubits
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ScalingScaling

We do not know how to scale liquid NMR QCWe do not know how to scale liquid NMR QC

M i b t lMain obstacles:
• Signal after initialization ~ 1 / 2n [at least in practice]

C h ti t i ll d ith l l i• Coherence time typically goes down with molecule size
• We have not yet reached the accuracy threshold ...
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Main sources of errors in NMR QCQ

Early on (heteronuclear molecules)Early on (heteronuclear molecules) 
inhomogeneity RF field

Later (homonuclear molecules) 
J coupling during RF pulses

Finally
decoherencedecoherence
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Solid-state NMR ?

molecules in
solid matrix

Yamaguchi & Yamamoto, 2000

Cory et al
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Electron spin qubitsp q

SL SR

Loss & DiVincenzo, PRA 1998Kane, Nature 1998
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Quantum Factoring 
Find the prime factors of N: chose a and find order r

f (x) = a x mod N Results from number theory:
f is periodic in x (period r)

Find the prime factors of N: chose a and find order r.

composite number
coprime with N

 f is periodic in x (period r)

 gcd(a r/2 ± 1, N ) is a factor of N

Quantum factoring: find r

Quantum: ~ L 3 P Shor (1994)C l it f f t i

g

Quantum:  ~ L 3 P. Shor (1994)Complexity of factoring 
numbers of length L: Classically:  ~ e L/3
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Widely used crypto systems (RSA) would become insecure.



Factoring 15  - schematic
|  |0 |1 |22L 1 

QFT

|x = |0 + |1 + ... + |22L-1

|x2 L bits |0

 |k2L/r
k

Interference

H

x a x mod N

QFT| 

L=log2(15)  |x | a x mod 15 

| 

|1
3 qubits

Quantum parallelism

4 qubits
|  | x

x0xx = ... + x2 22 + x1 21 + x0 20

ax = ... a a2 ax2 x1 x0 ...

...
x a 2x a 1 x a 4

x1
x2

a = 4, 11             amod 15 = 1    “easy” case

x ax a x a

period 2

36

a = 2, 7, 8, 13     amod 15 = 1     “hard” case
a = 14                 fails

period 4



Quantum Fourier transform and the FFT

[ 1 1 1 1 1 1 1 1 ] [ 1 .  .  .  .   .  .  . ]

FFT
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|3 = |0 |0 + |1 |2 + |2 |0 + |3 |2 + |4 |0 + |5 |2 + |6 |0 + |7 |2
= ( |0 + |2 + |4 + |6 ) |0 +  ( |1 + |3 + |5 + |7 ) |2 after mod exp
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|4 = ( |0 + |4 ) |0 + ( |0 - |4 ) |2

p

after QFT



11 7 T l O f d d ti t t t b

Experimental approach
 11.7 Tesla Oxford superconducting magnet; room temperature bore
 4-channel Varian spectrometer; need to address and keep track of 7 spins

 phase ramped pulsesp p p
 software reference frame

 Shaped pulses
C t f t lk

1
2 34
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 Compensate for cross-talk
 Unwind coupling during pulses
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 J - couplings:  2 - 220 Hz54

7 25 mK
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F
C5H5 (CO)2

Fe
 coherence times: 1.3 - 2 s



Picture of the labPicture of the lab
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Thermal Equilibrium 
Spectrani
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Spectra after   
state initializationni
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Pulse sequence (a=7) 

/2 X- or Y-rotations (H and gates)
 i ( f i )
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> 300 pulses,   720 ms
X-rotations (refocusing)
Z - rotations



“Easy” case (a=11)
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“Hard” case (a=7)
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Model quantum noise (decoherence)
Spins interact with the environment

Decoherence

The decoherence model for 1 nuclear spin is well-described.

phase
randomization

energy
exchange

We created a workable decoherence model for 7 coupled spins.
The model is parameter free
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The model is parameter free.



Simulation ofni
ts
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Simulation ofni
ts
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