

Colour centers in diamond

Slides provided by:

Joerg Wrachtrup Ronald Hanson Lilly Childress

3. Physikalisches Institut

The dopants

NE8b

PRB 72, 035214 2005

Science 276, 2012-2014 (1997)

Phys. Rev. Lett. 94, 180602 (2005)

Level scheme of color centers

Shielding by the diamond lattice provides perfect photostability

Even electron spin states are resolvable

Level structure of color centers

Defect behaves as a single atom, trapped in the diamond lattice

Level structure similar to trapped ions or atoms

- ⇒ Diamond provides a solid state ion trap
- ⇒ Experimental power similar to trapped particles, but much easier to transform into applications

- Joint defect consisting of
 Vacancy
 Neighbouring substitutional N
- •Negatively charged (NV-)
- •Six electron (= two hole) system

The NV center

Amazing features:

- Optical detection of the spin state
- Optical spin polarisation of the ground state (« Laser cooling »)
- Narrow lines, T₂ = 1ms, Linewidth of ground state levels: 1 kHz.

The NV center

Amazing features:

- Optical detection of the spin state
- Optical spin polarisation of the ground state (« Laser cooling »)
- Narrow lines, T₂ = 1ms, Linewidth of ground state levels: 1 kHz.

Experimental setup for optical spin readout

Confocal microscope with microwave access

Image of implanted diamond

Universität Stuttgart

Germany

Wiring up NV centers

CVD diamonds grown by Element6

Spin-resolved optical excitation (*T* < 10K)

Early work by Stuttgart, Harvard, HP Labs

Initialization and readout by resonant excitation

3. Physikalisches Institut

Manipulating a single spin

- Pulsed sequence consisting of laser cooling, spin manipulation and detection
- Signal is <1photon/repetition => many repetitions
- \Rightarrow Similar to ion trap, but experimentally easier

The NV center

Amazing features:

- Optical detection of the spin state
- Optical spin polarisation of the ground state (« Laser cooling »)
- Narrow lines, T₂ = 1ms, Linewidth of ground state levels: 1 kHz.
- Single Qubit gates: Microwave pulses

Coupling NV centers

Photons	Magnetic Dipolar coupling	Use nuclear spin qubits
	barn or	14N VCCC
Cirac, Zoller Lukin `06		
Proper levels and transitions	Magnetic dipoles	surrounding nuclei
Manson, Hemmer, Santori	$d_{\rm coherent} \propto \sqrt[3]{T_2}$	≻Couple nuclei via NV
Transfer limited photons: Batalov et al. PRL 08		➢Read out single nuclei
But: bad coupling efficiency		

Coupling NV centers

Photons	Magnetic Dipolar coupling	Use nuclear spin qubits
	2 mor	14N VCCC
Cirac, Zoller Lukin `06 ≻Proper levels and	≻Magnetic dipoles	C c Couple NV to surrounding nuclei
Manson, Hemmer, Santori	$d_{coherent} \propto \sqrt[3]{T_2}$	Couple nuclei via NV
Transfer limited photons: Batalov et al. PRL 08		➢Read out single nuclei
But: bad coupling efficiency		

Coupling by dipolar interaction

Idea:

 \Rightarrow NV B feels the magnetic dipole of NV A

⇒ Depending on the state NV A, NV B has another resonance frequency

Nuclear spin Hamiltonian Coupled spins J>0: antíferro mag.

F2

)<0: ferro-mag.

 F_5

F4

$$\mathcal{H}_J = \hbar \sum_{i < j}^n 2\pi rac{J_{ij}I_z^iI_z^j}{I_z^j}$$

Typical values: J up to few 100 Hz

Magnetic dipole coupled spin arrays

Single spin readout

STED on NV: 10nm resolution (Hell et al. Nat. Phot. 2009)

Magnetic dipole coupled spin arrays

Take pure (CVD) diamond... *

Universität Stuttgart

Germany

*Element Six Ltd., UK

..and implant nitrogen*! (*J.Meijer; S. Prawer)

Universität Stuttgart

Germany

Fundamental problem: Straggle

- \Rightarrow Position is not controlled
- \Rightarrow Straggle on the order of the implantation depth
- ⇒ Deep implant \leftarrow → high distance between NVs Shallow implant \leftarrow → bad T2 time due to surface
- ⇒ Solutions:
 Shallow implant + Overgrowth
 deep implant + extensive search

Writing Defect Dimers with 10 MeV µbeam implantation

Success chance 1% to have two coherently interacting dimers

Two defect centers

Electron spin ground state:

$$H = g\beta BS_{A,B} + (S\overline{D}S)_{A,B} + S_A\overline{T}S_B$$

Switchable interaction! Coupling between defect: 0,5,10,20 kHz

www.pi3.uni-stuttgart.de

Bell state: Density matrix tomography

 $\Phi_{+} = \frac{1}{\sqrt{2}} (|++\rangle + |--\rangle)$

Fidelity Φ +: 0.67 (theoretically: 0.9)

Coupling NV centers

Photons	Magnetic Dipolar coupling	Use nuclear spin qubits
	2 mor	14N VCCC
Cirac, Zoller Lukin `06 ≻Proper levels and	≻Magnetic dipoles	C c Couple NV to surrounding nuclei
Manson, Hemmer, Santori	$d_{coherent} \propto \sqrt[3]{T_2}$	Couple nuclei via NV
Transfer limited photons: Batalov et al. PRL 08		➢Read out single nuclei
But: bad coupling efficiency		

3. Physikalisches Institut

Coupling nearby ¹³C nuclei

- ¹³C nuclear spin creates magnetic field at NV
- CNOT gate is implemented by selective microwave transition (flip nucleus if other nucleus is in |0>)

Flip nuclei
 conditioned on
 NV and nuclear
 state

3. Physikalisches Institut

Creation of entangled states

Flip nuclei conditioned on NV and nuclear

state

- Creation of entangled states possible $|00\rangle\mp|11\rangle$
- P. Neumann et.al., Science 320, 1326 (2008)
- Scaling up to four nuclear spins straightforward,
- Scaling to 10-20spins presumably possible

Different development: QND readout of nuclear spins

Readout of single quantum systems

Standard readout <1 photon per run limited by photon shot noise (at best) Example: fluorescence detection of single NV

Single shot readout determine spin state in a single run but destroy the system or its quantum state (requires >1 photon per run) limited by quantum shot noise Example: Photon detection in Photomultiplier

Quantum non demolition (QND) readout >1 photon per run and preservation of the system and its spin state Projective measurement Example: Microwave photons in cavity (Haroche)

Universität Stuttgart

Germany

Observing flips of a single nuclear spin

Repetetive QND measurements reveal quantum jumps of a single nuclear spin (in diamond at room temperature)

P.Neumann et.al., Science 329, p.542 (2010)

Fidelity of spin state detection

Photon counting histogram of timetrace

- Two almost perfect Poissonians
- Threshold for state discrimination
 - Fidelity from overlap 99%
 - Fidelity to detect given state 92%

Coupling NV centers

Photons	Magnetic Dipolar coupling	Use nuclear spin qubits
	2 mor	14N VCCC
Cirac, Zoller Lukin `06 ≻Proper levels and	≻Magnetic dipoles	C c Couple NV to surrounding nuclei
Manson, Hemmer, Santori	$d_{coherent} \propto \sqrt[3]{T_2}$	Couple nuclei via NV
Transfer limited photons: Batalov et al. PRL 08		➢Read out single nuclei
But: bad coupling efficiency		

Preparing the teleporter: entangling remote qubits

Experiments with trapped atoms: Monroe group, Nature 2007 Weinfurter group, Science 2012 Rempe group, Nature 2012

we use the scheme proposed in: Barrett and Kok, PRA 71, 060310 (2005)

- locally entangle electron spin and photon
- project photons onto entangled state by joint measurement

entanglement is heralded by photon detection: photon loss reduces success rate, but not fidelity of final state

Remote entanglement: setup

Remote entanglement: setup

Remote entanglement: results

Nature 497, 86 (2013)

$$|\psi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|\downarrow_A\uparrow_B\rangle \pm |\uparrow_A\downarrow_B\rangle)$$

State fidelity $F(\Psi^{-}) \approx 73\%$ $F(\Psi^{-}) \approx 87\%$

Success probability $\approx 10^{-7}$; one event per 10 minutes $\approx 3*10^{-6}$; one event per 100 s

Prospects in quantum information processing with NV centers in diamond: quantum networks

Quantum Internet

Topological quantum computing

Nickerson, Li, Benjamin, Nature Communication 2013

- Loophole-free Bell test
- Device-independent quantum key distribution
- Quantum cloud computing Barz et al., Science 2012