Universal Digital Quantum Simulation with Trapped Ions

Authors: B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C. F. Roos

Presentation by Ziyad Amodjee, Arno Bargerbos & Manish Thapa

Outline

- Analog & Digital simulation
- Trotter approximation
- Setup
- Toolbox
- Two spin models
- Three and six spin models
- Conclusions

Introduction

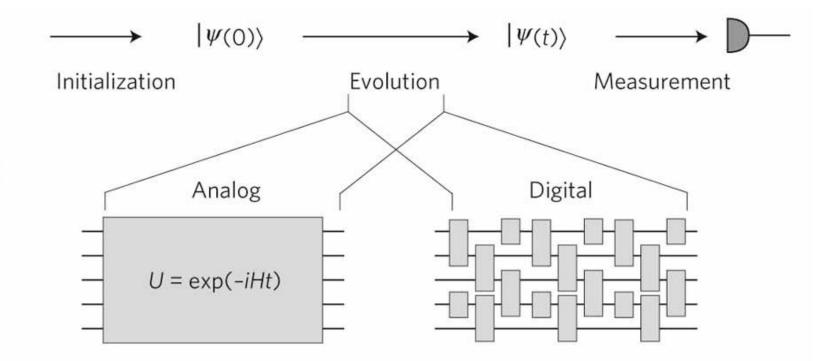
Many natural phenomena are described by quantum mechanics: to calculate properties of physical systems one can simulate quantum physics

With classical computers the problem increases exponentially with the number of particles involved

One can use quantum computers that can efficiently perform the simulation

Digital and Analog Quantum Simulation

The goal is to obtain $\psi(t) = e^{\frac{-i\hat{H}t}{\hbar}}\psi(0)$



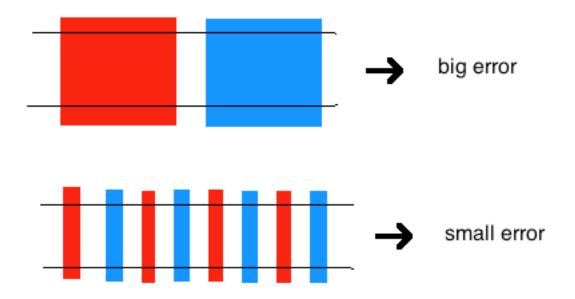
The digital simulator operating under a universal set of unitaries forms a universal quantum simulator

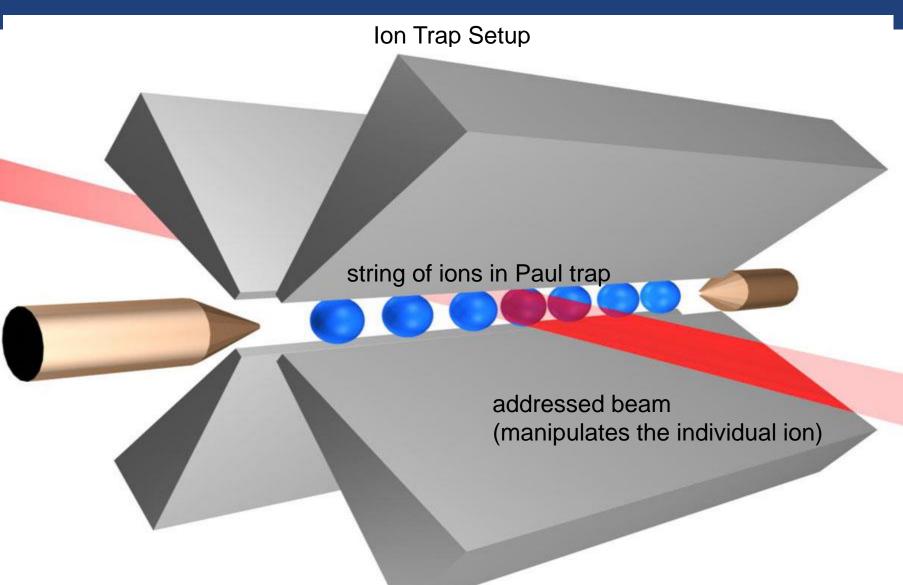
Trotter Approximation

In general the unitary *U* associted with the Hamiltonian *H* is $U = e^{\frac{-i\sum_k \hat{H}_k t}{\hbar}} \neq \prod_k e^{\frac{-i\hat{H}_k t}{\hbar}}$ as the terms \hat{H}_k do not always commute

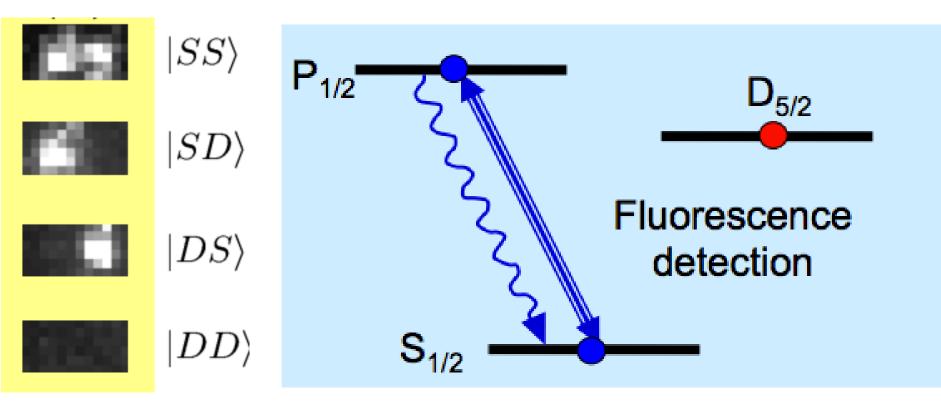
However, according to the Trotter Approximation $U = \lim_{n \to \infty} \left(\prod_k e^{\frac{-i\hat{H}_k t}{\hbar n}} \right)^n$

For finite n, the error can be made arbitrary small.

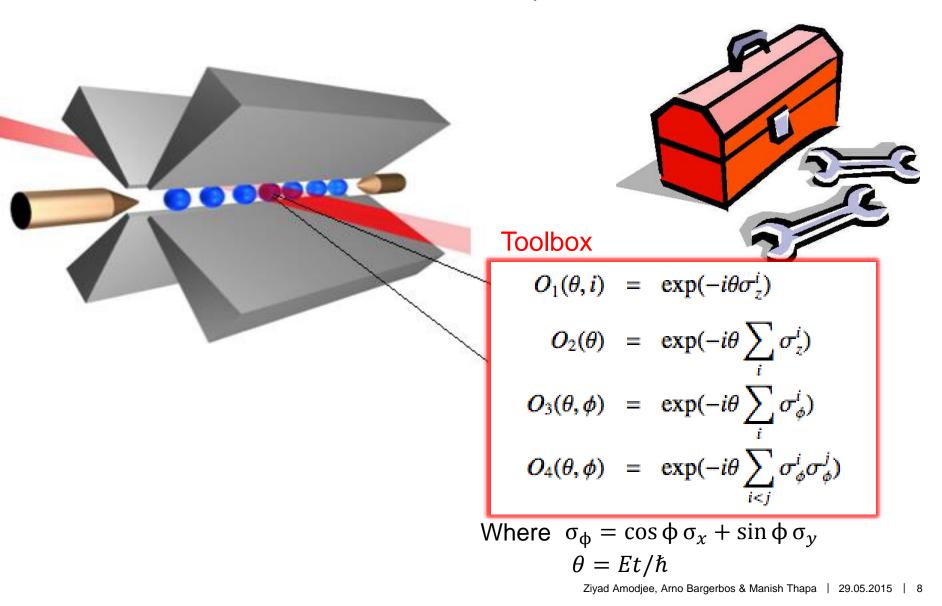




Zeeman states encode a qubit in each ion



Universal set of operators

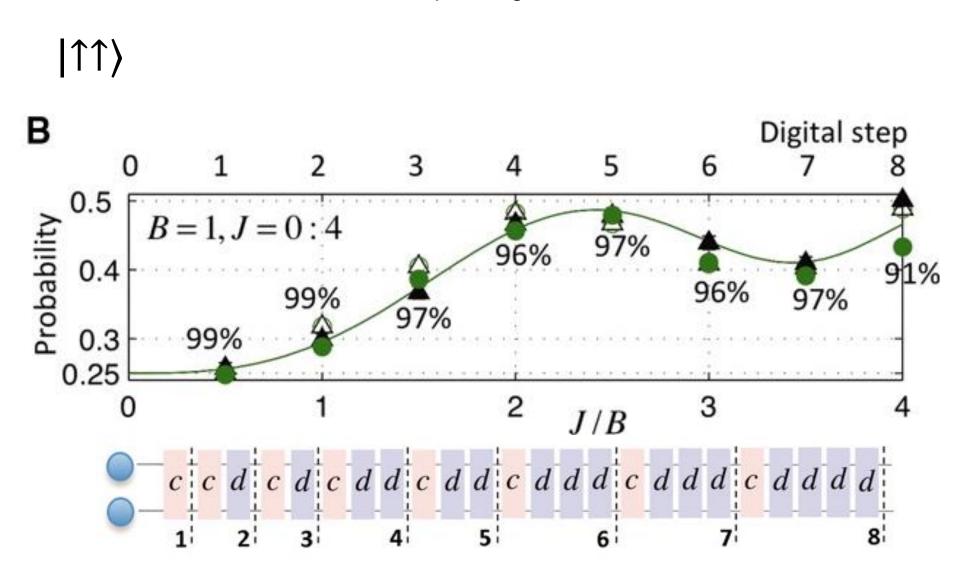


Two spin Ising chain $|\uparrow\uparrow\rangle$ $H = \frac{B(\sigma_z^1 + \sigma_z^2)}{B(\sigma_z^1 + \sigma_z^2)} + J\sigma_x^1\sigma_x^2$ J = 2Bŏi. ۰ -. 0 ii. 0 ii. 1 v. Probability -00 θ_a 0.5 1.5 Simulated phase evolution (π) 1.5

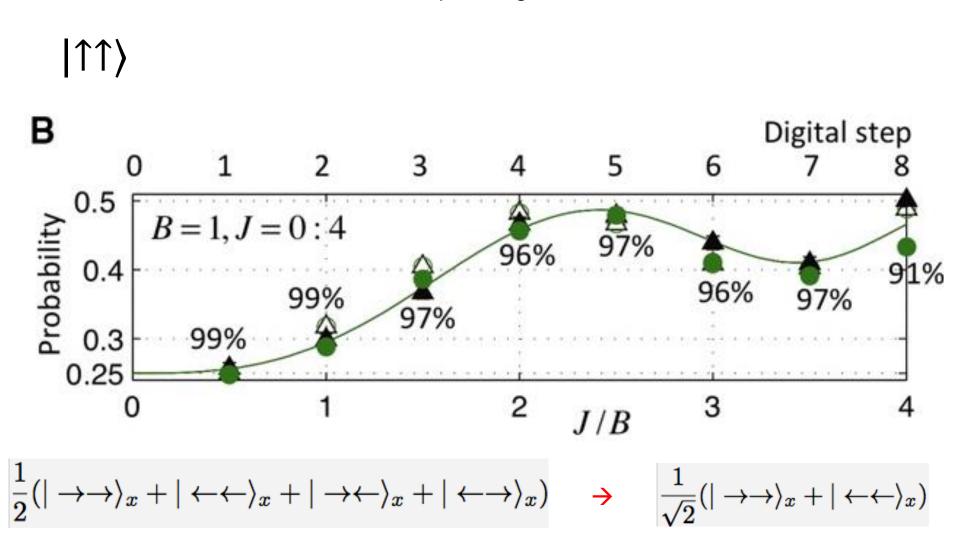
time(t

dj

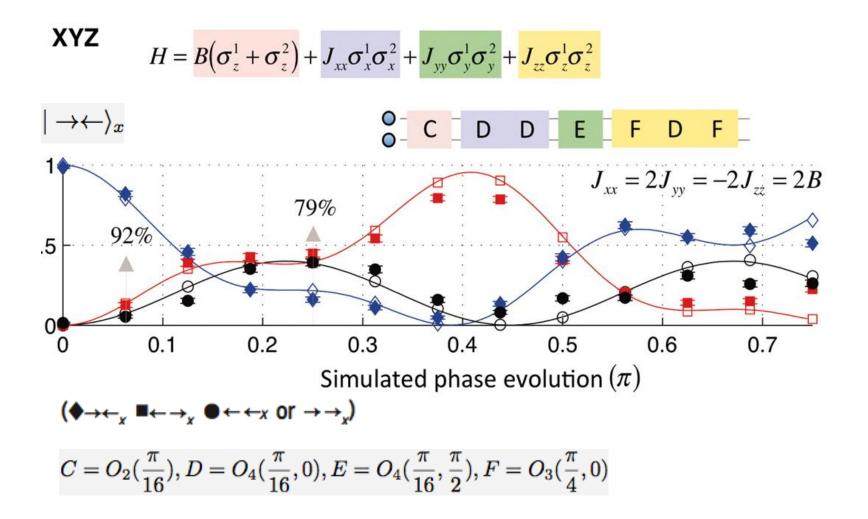
Two spin Ising chain



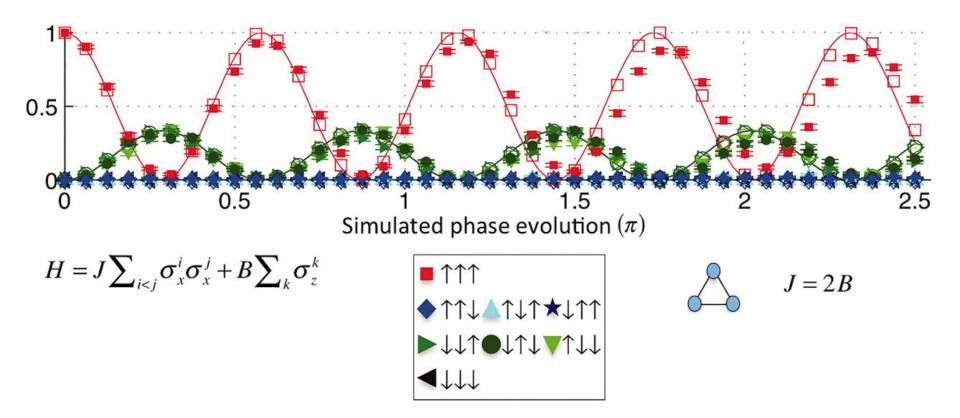
Two spin Ising chain



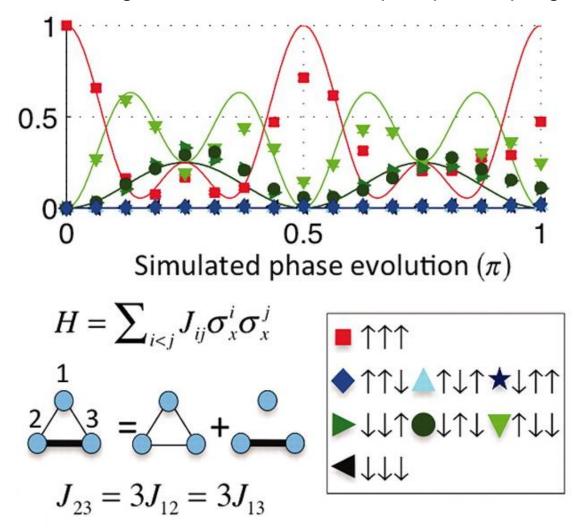
The XYZ Model



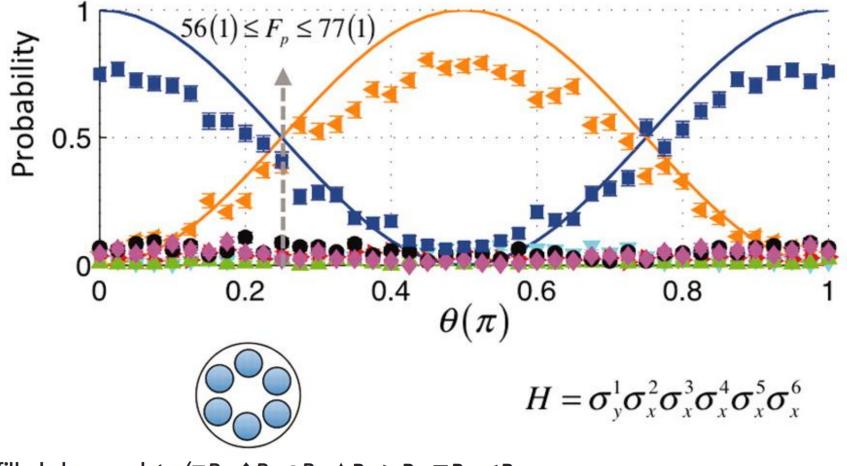
Long-range 3 spin Ising system



Inhomogeneous distribution of spin-spin couplings



Six spin six-body interaction



filled shapes: data ($\square P_0 \land P_1 \land P_2 \land P_3 \triangleright P_4 \lor P_5 \land P_6$, where P_i is the total probability of finding *i* spins pointing down).

Conclusions

- The Trotter approximation allows for accurate digital simulation
- Trapped ions serve as a strong proof of concept universal quantum computer
- Hamiltonians of up to six interacting particles are simulated to reasonable accuracy