Error Correction using NV-center

Robin Eriksson Vilhelm Rydén 22.05.2015

Why quantum error correction?

Decoherence from interacting with environment

Can have faulty gates or preparation

Errors are continuous (sign/bit flip)

Outline

Classical Error Correction

Quantum Error Correction

Experimental Setup (NV-center)

Results and conclusions

Classical Error Correction

Classical error correction

- 1. Encode by copying $0 \rightarrow 000$ $1 \rightarrow 111$
- 2. Decode by majority voting

Improvement for error probability p<1/2

Quantum Error Correction

Quantum error correction (QEC)

1. No cloning theorem

2. Measurement destroys quantum information

3. Error are continuous

QEC: Bit flip error - encoding

One intuitive approach $a|0> + b|1> \rightarrow a|000> + b|111>$

Logical states $|0_L^{>} \equiv |000^{>}$ $|1_L^{>} \equiv |111^{>}$

Suitable for bit flip QEC E.g. a|100> + b|011>

QEC: Bit flip error - detection

 $\begin{array}{ll} Z_1Z_2 \mbox{-} Check \mbox{ parity of qubits 1 and 2} \\ \mbox{Operator: } Z \otimes Z \otimes I \\ \mbox{+} 1 \mbox{ if same, -1 if different} & a|100> + b|011> \end{array}$

Do same for $2,3 \rightarrow$ we can determine if a bit flip occurred

No information about amplitudes, a and b, thus the superposition is not destroyed

QEC: Phase error - encoding

Like Bit flip but use |+> and |-> states $|0_{L}> \equiv |+++>$ $|1_{L}> \equiv |--->$

Encode using Hadamard gates

New operators $H \otimes^{3} Z_{1} Z_{2} H \otimes^{3} = X_{1} X_{2}$ $H \otimes^{3} Z_{2} Z_{3} H \otimes^{3} = X_{2} X_{3}$

- 1. Encode
- 2. Phase error
- 3. Decode

- 4. Detect
- 5. Restore

1. Encode

 $a|0> + b|1> \rightarrow a|+++> + b|--->$

2. Phase error

3. Decode

No error: a|000> + b|111> Error: a|100> + b|011>

4. Detect

No error: $a|000> + b|111> \rightarrow (a|0> + b|1>) \otimes |00>$ Error: $a|100> + b|011> \rightarrow (a|1> + b|0>) \otimes |11>$

5. **Restore**

No error: $(a|0> + b|1>) \otimes |00> \rightarrow (a|0> + b|1>) \otimes |00>$ Error: $(a|1> + b|0>) \otimes |11> \rightarrow (a|0> + b|1>) \otimes |11>$

QEC: Summary

- No cloning theorem No cloning necessary!
- 2. Measurement destroys quantum information Amplitudes a and b not measured!
- Error are continuous
 Correction of bit flip and phase errors sufficient!

Experimental Setup

Setup: Nitrogen Vacancy (NV) center

A hybrid spin system

 $^{13}C_1^{}$, $^{13}C_2^{}$ and ^{14}N used as Qubits'

Electron spin is used for read out and initialization

Setup: Spin manipulation

- Electron and nuclear spins are manipulated by microwave signals
- Which rotates the spins around an axis in the x–y plane of the Bloch sphere.

P. Neumann et al., Science, 2010/06/30, Vol 329

Setup: Hyperfine splitting

Hyperfine splitting electron: $m_s = 0 \rightarrow -1$

- ¹⁴N: 2,16 MHz
- ¹³C₁: 413 kHz
- ¹³C₂:89 kHz

As Qubits use: N: $m_1 = 0, -1 \text{ as } |0>$ and +1 as |1> $C_{1,2}$: $m_1 = \pm 1/2$

Setup: CNOT gate

CNOT gate between two nuclear spins

CPhase

Hadamard rotations

Setup: SWAP gate

SWAP-like gates are used to transfer electron spin polarization onto the nuclear spins

Setup: Initialization

To raise initialization fidelity:

- Address issue with charge state of the NV
- Discard if N is still in m₁ = +1 state

99% initialization fidelity can be achieved for the state $|^{14}N, ^{13}C_1, ^{13}C_2 = |0, 0, 0>$

Setup: Projective read out

Projective read out of ${}^{13}C_1$ nuclear spin.

Repeatable

Readout fidelities: ${}^{14}N$: 95.8% ${}^{13}C_1$: 96.9% ${}^{13}C_2$: 99.6%

Results

Results: Process fidelity on error probability

Conclusions

NV-center vs Superconducting

NV-center:

- Strong coupling up to 10 qubits possible
- Room temperature

Superconducting:

- 5 to 9 qubits working QEC
- mK temperatures

Conclusions

High-fidelity initialization of a whole spin register (99 %)

Implementation of Phase QEC

Corrects multiple qubit phase errors

Acknowledgement and references

Thanks to Dr. Abdufarrukh Abdumalikov for helpful supervising!

[1] G. Waldherr et al., Nature, 2014/01/29/online

[2] M. Gurudev Dutt et al., Science, 2007/01/06, vol 316

[3] P. Neumann et al., Science, 2010/07/30, vol 329

[4] V. Filidou et al., Nature Physics, August 2012, vol 08

[5] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, 2010