Long-Distance Free-Space Distribution of Quantum Entanglement

M. Aspelmeyer, et al., *Science* 301, 621 (2003)¹

Talk held by Erich Schurtenberger and François Bianco

Outline

Entanglement

Setup and methods

Results and Interest

Conclusion

Introduction

Outline

- Outline
- Entanglement

Setup and methods

Results and Interest

Conclusion

- 1. Entanglement and Bell inequality
- 2. Experimental setup and methods
- 3. Result and Interest of this experiment
- 4. Summary and questions

Entanglement

Quantum Entanglement

Bell inequality

Bell states

Correlation coefficient

• CHSH inequality

Maximal violation

● SPDC

Setup and methods

Results and Interest

Conclusion

Entanglement

Quantum Entanglement

Introduction

Entanglement

Quantum Entanglement

Bell inequality

Bell states

Correlation coefficient

CHSH inequality

Maximal violation

● SPDC

Setup and methods

Results and Interest

Conclusion

Definition : An entangled state of a composite system is a state that cannot be written as a product state of the component systems.

- Only one quantum state for many objects (correlation)
- Possible to have spatially separated objects (non locality)

Bell inequality

Introduction

Entanglement

Quantum Entanglement

- Bell inequality
- Bell states
- Correlation coefficient
- CHSH inequality
- Maximal violation
- SPDC

Setup and methods

Results and Interest

Conclusion

John S. Bell showed in 1964 that

- in the hidden variables theory there is no possible perfect entangled state
- thus the maximal correlation is 2
- but QM allows perfect correlation in violation of the local realism (classical point of view)
- **QM** maximal correlation is $2\sqrt{2}$.

Bell states

Introduction

Entanglement

Quantum Entanglement

Bell inequality

Bell states

Correlation coefficient

• CHSH inequality

Maximal violation

SPDC

Setup and methods

Results and Interest

Conclusion

There are four *maximal entangled two-qubit states* or *Bell states* written as :

 $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} (|H\rangle_{A}|V\rangle_{B} - |V\rangle_{A}|H\rangle_{B})$ (the one used in the paper) $|\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|H\rangle_{A}|V\rangle_{B} + |V\rangle_{A}|H\rangle_{B})$ $|\Phi^{+}\rangle = \frac{1}{\sqrt{2}} (|H\rangle_{A}|H\rangle_{B} + |V\rangle_{A}|V\rangle_{B})$

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|H\rangle_{A}|H\rangle_{B} - |V\rangle_{A}|V\rangle_{B})$$

With H for horizontal, V for vertical, A for the first qubit, and B for the second.

Correlation coefficient

CHSH inequality

Introduction

Entanglement

Quantum Entanglement

Bell inequality

Bell states

Correlation coefficient

CHSH inequality

Maximal violation

● SPDC

Setup and methods

Results and Interest

Conclusion

Clauser-Horne-Shimony-Holt (CHSH) inequality

$$S = |E(\phi_A, \phi_B) - E(\phi_A, \widetilde{\phi}_B) + E(\widetilde{\phi}_A, \phi_B) + E(\widetilde{\phi}_A, \widetilde{\phi}_B)| \le 2$$
(2)

Equivalent to Bell inequality

■ If the photons are correlated the inequality is violated

Maximal violation

Introduction

Entanglement

Quantum Entanglement

Bell inequality

Bell states

Correlation coefficient

CHSH inequality

Maximal violation

SPDC

Setup and methods

Results and Interest

Conclusion

The maximal violation is found for the angles set $\{\phi_A, \tilde{\phi}_A, \phi_B, \tilde{\phi}_B\} = \{0^o, 45^o, 22.5^o, 67.5^o\}$

SPDC

Introduction

Entanglement

Quantum Entanglement

- Bell inequality
- Bell states
- Correlation coefficient
- CHSH inequality

```
Maximal violation
```

```
SPDC
```

```
Setup and methods
```

Results and Interest

Conclusion

Spontaneous parametric down-conversion, a source for polarization-entangled photons.

Figure 3: Parametric Down Conversion⁵

Principle

- 1. Produce an ultraviolet photon (laser diode)
- 2. Photon hits a non linear crystal
- 3. It produce two photons with doubled wavelength

Entanglement

Setup and methods

• Free-space setup

• Experimental Setup

• Experimental conditions

• Where are the photons ?

• Requirement for CHSH

Results and Interest

Conclusion

Setup and methods

Free-space setup

Introduction

Entanglement

Setup and methods

• Free-space setup

- Experimental Setup
- Experimental conditions
- Where are the photons ?
- Requirement for CHSH

Results and Interest

Conclusion

Important points :

- no fibers between the source and receivers
- external conditions play a role
- no ideal laboratory environment

Experimental Setup

Introduction

Entanglement

Setup and methods

Free-space setup

• Experimental Setup

Experimental conditions

- Where are the photons ?
- Requirement for CHSH

Results and Interest

Conclusion

Figure 5: Experimental setup¹

- Source produce with SPDC a given Bell state.
- Receivers are arranged for coincidence measurement.
- To show the quality of the entanglement, they measured polarization correlation.
- LAN and WLAN to monitor the detection events.

Experimental conditions

Introduction

Entanglement

Setup and methods

Free-space setup

Experimental Setup

Experimental conditions

• Where are the photons ?

Requirement for CHSH

Results and Interest

Conclusion

The outside environment is far away from an ideal laboratory

Conditions :

- Temperature $0^{o}C$
- Wind (stability of detectors)
- Trees
- Trucks, boats, freight trains
- Environment lights

Setup :

- Wind protection
- Optical selectivity suppress the background lights
- Telescope (focus)
- Single mode fiber (filter)

Entanglement

- Setup and methods
- Free-space setup
- Experimental Setup
- Experimental conditions
- Where are the photons ?
- Requirement for CHSH

Results and Interest

Conclusion

Many photons were lost :

- After the SPDC 120,000 photons s⁻¹ in each arm of the source
- 20,000 photons s^{-1} are correlated
- Coincidence rate of 15 photons s^{-1} at the detectors

Possible reasons :

- Decoherence due to long-distance propagation
- Attenuation because of propagation and devices
- Detection of the avalanche photo diodes of about 40%

Entanglement

Setup and methods

Free-space setup

Experimental Setup

Experimental conditions

Where are the photons ?

Requirement for CHSH

Results and Interest

Conclusion

Noise in an experiment produces a non-pure QM state.

• Thus the quantum optimum of $S_{qm} = 2\sqrt{2}$ cannot be obtained.

Define a modified Bell-parameter

$$S_{exp} = VS \tag{3}$$

Where V is the Visibility $V = E(\phi, \phi)$ and is proportional to the fidelity.

The fidelity is the overlap of the state with the ideal pure state.

- To violate the Bell inequality $V > \frac{1}{\sqrt{2}} \approx 71\%$
- $\blacksquare \Rightarrow F \gtrsim 78\%$
- Measured value for $F=87\pm 3\%$

Entanglement

Setup and methods

Results and Interest

Result

Interest

Conclusion

Results and Interest

Result

Introduction

Entanglement

Setup and methods

Results and Interest

Result

Interest

Conclusion

By measuring the correlation coefficients $E(\phi_A, \phi_B)$ they got

$$S = 2.41 \pm 0.10 \not< 2 \tag{4}$$

 \Rightarrow the two separated receiver stations shared an entangled quantum state.

Interest

Introduction	
	_

Entanglement

Setup and methods

Results and Interest

Result

Interest

Conclusion

This experiment could be used

- for satellites based communication with quantum cryptography.
- to study fundamental limits due to long-distance deterioration of quantum correlation because of decoherence.

Entanglement

Setup and methods

Results and Interest

Conclusion

- To remember
- References
- Questions ?

Conclusion

To remember

Introduction

Entanglement

Setup and methods

Results and Interest

Conclusion

To remember

References

Questions ?

QM Entanglement can be showed by violation of Bell inequality.

Experiment independent form an ideal laboratory environment, application for communications.

It's possible to distribute polarized-entangled photons without optical fibers.

References

Introduction
Fataaalaasat
Entanglement
Setup and methods
B N N N
Results and Interest
Conclusion

```
• To remember
```

References

• Questions ?

- 1. M. Aspelmeyer, et al., Long-Distance Free-Space Distribution of Quantum Entanglement Science **301**, **621** (2003)
- 2. Quantiki, http://www.quantiki.org
- 3. Andreas Wallraff, Lectures notes, Quantum System for Information Technology, ETHZ (WS 06/07)
- 4. Wikipedia, www.wikipedia.org
- 5. http://theory.gsi.de
- 6. M. Aspelmeyer, *et al.*, *Long-Distance Free-Space Distribution of Quantum Entanglement Science* Supporting Online Material - Material and Methods

Questions?

Entanglement

Setup and methods

Results and Interest

Conclusion

To remember

References

Questions ?

La science ne sert guère qu'à nous donner une idée de l'étendue de notre ignorance. [Félicité de Lamennais]

The important thing is not to stop questioning. [Albert Einstein]