Implementing gates in quantum dot spin qubits

Bruno Schuler and Marco Gähler

29.11.2010, ETH Zürich

Source:

David P. DiVincenzo Double Quantum Dot as a Quantum Bit. Science 309, 2173 (2005);
Outline

- Two electron spin qubit
- Device
- Energy levels
- Manipulation of states
 - Dephasing
 - Rabi oscillations
 - Spin echo technique
motivation

Semiconductor quantum dots:

- Engineered artificial atoms
- Long lifetime of the quantum states (T_1) compared to pulse frequency
- Short coherence lifetime T_2
 -> spin echo
Two electron spin qubit

- Double-well potential = H_2 molecule
- ground state = Singlet
 excited state = Triplet
- Difference: Spin coupled to 10^6 spins of host crystal nuclei
Bloch sphere representation

\[H = \begin{pmatrix} J(\varepsilon) & \Delta B^z_{\text{nuc}} \\ \Delta B^z_{\text{nuc}} & 0 \end{pmatrix} \]

\(|T\rangle \rightarrow |S\rangle \) exchange interaction

\(|T\rangle \rightarrow |S\rangle \) hyperfine interactions
Device

- Quantum Dots (QDs) confined in 2DEG (GaAs/AlGaAs interface) with split gate technique
- The voltage V_L, V_R controls charge in QDs
- V_T tunes interdot tunneling
- Single electrons can be detected by measuring the conductance g_s over the quantum point contact (QPC)
Charge state dependent QPC conductance

- \((m,n) = \) electrons in (left, right) dot
- Additional electrons reduce the conductance \textit{discretely}
- QPC is more sensitive to the right dot
 - \(\rightarrow\) difference between (0,2) and (1,1)
- \(V_L\) also affects right dot
 - \(\rightarrow\) honeycomb shape
Charge state dependent QPC conductance

- \((m,n)\) = electrons in (left, right) dot
- Additional electrons reduce the conductance *discretely*
- QPC is more sensitive to the right dot
 - \(\rightarrow\) difference between \((0,2)\) and \((1,1)\)
- \(V_L\) also affects right dot
 - \(\rightarrow\) honeycomb shape
Charge state dependent QPC conductance

- \((m,n) = \) electrons in (left, right) dot
- Additional electrons reduce the conductance *discretely*
- QPC is more sensitive to the right dot
 -> difference between (0,2) and (1,1)
- \(V_L\) also affects right dot
 -> honeycomb shape
Energy depending on detuning

- The triplet states \((m = -1, 0, +1)\) are split off by a 100mT external magnetic field.
- Detuning parameter \(\varepsilon \sim (V_R - V_L)\).
- Only states with similar energies can mix (consider \(S=T_0, S=T_+\)).
General method for propagation and readout

- Initialize in \((0,2)S\)
- Pulse transfers \((0,2)S\) into the spatially separated \((1,1)S\) state
- \((1,1)S\) and \((1,1)T\) form a two level system
- The \((1,1)S\) state is manipulated
- The state is projected back onto \((0,2)S\) if the final state was \((1,1)S\) and measured with the QPC. Triplet state is blocked
Manipulation of states, dephasing

- Short voltage pulse to large detuning suppresses exchange interaction of separated spins
- Due to different hyperfine interactions caused by the GaAs nuclei in the QDs, different rotations occur
- -> dephasing
Limits of the coherence

- Weak interaction with $\sim 10^6$ other GaAs atoms
- Fluctuations of the magnetic field of 1-5mT, changing at around 10μs
Experimental results of dephasing

- Correlation of the states decays gaussian
- With B-field of 100mT, S state can only mix with the T_0 state and thus S has a higher probability than with B=0mT
The four states can be mapped on the Bloch sphere.

At an energy of slightly below ε the state rotates between the states $|l\rangle >$ and $|l\rangle >$.

After a time τ_E the state changes from $|l\rangle >$ to $|l\rangle >$ or vice versa, this is called $\sqrt{\text{SWAP}}$.
Rabi oscillations

- By a slow decrease of ε the state gets initialized in the $|\uparrow \downarrow>$ state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of $|\uparrow \downarrow>$, $|\downarrow \uparrow>$
- The slow increase of ε leads either to (1,1)S or (1,1)T state
Rabi oscillations

- By a slow decrease of ε the state gets initialized in the $|\uparrow \downarrow>$ state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of $|\uparrow \downarrow>$, $|\downarrow \uparrow>$
- The slow increase of ε leads either to $(1,1)S$ or $(1,1)T$ state
Rabi oscillations

- By a slow decrease of ε the state gets initialized in the $|\uparrow \downarrow\rangle$ state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of $|\uparrow \downarrow\rangle$, $|\downarrow \uparrow\rangle$
- The slow increase of ε leads either to (1,1)S or (1,1)T state
Rabi oscillations

- By a slow decrease of ε the state gets initialized in the $|\uparrow \downarrow\rangle$ state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of $|\uparrow \downarrow\rangle$, $|\downarrow \uparrow\rangle$
- The slow increase of ε leads either to (1,1)S or (1,1)T state
Rabi oscillations

- By a slow decrease of ε the state gets initialized in the $|\uparrow \downarrow>$ state
- Small detuning leads to a rotation around the z-axis due to large exchange interaction
- Depending on τ the state is in a superposition of $|\uparrow \downarrow>$, $|\downarrow \uparrow>$
- The slow increase of ε leads either to $(1,1)S$ or $(1,1)T$ state
Experimental results of Rabi oscillations

- Rotations about the x-axis leads to oscillations on the singlet probability
- The decay time is proportional to the frequency
- Small detuning leads to higher exchange and therefore to faster rotations
Spin echos

- **Idea:** reduce the dephasing by using rabi oscillations
- rotation by \((2n+1)=\pi\) about z-axis
- Let system evolve for the same time \(\tau_S = \tau_{S'}\)
- dephasing is interfering destructively
Conclusion

- Coherent control of a logical qubit based on two-electron spin states
- Electrostatic gate control only
- Rabi oscillations and SWAP operation were demonstrated
- Spin echo technique reduces the decoherence caused by B-field fluctuations
 -> enhanced coherent spin-lifetime of 1μs