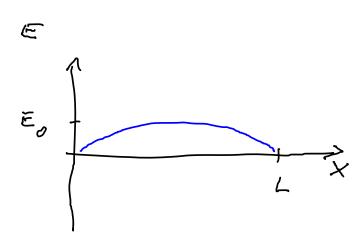
3.5.1 Der 1D schwarze Strahler:

 Objekt der Länge L und Durchmesser D << L bei fester Temperatur T.

 Beispiel für einen realen 1D schwarzen Strahler: ein Koaxialkabel oder Hohlleiter bei ausreichend niedrigen Temperaturen



- Elektromagnetische Energie ist in Form von stehenden elektromagnetischen Wellen in diesem Objekt gespeichert.
- **Frage**: Wieviel elektromagnetische Energie *U* ist in einem solchen Objekt bei Temperatur *T* gespeichert?

Vorgehensweise:

- a. Bestimme die Energie U, die in einer einzelnen stehenden Welle (einer Mode) bei fester Wellenlänge λ oder Frequenz ν gespeichert ist.
- b. Bestimme die Anzahl der möglichen stehenden Wellen (Moden) in Abhängigkeit von der Frequenz.
- c. Bestimme die Gesamtenergie der im Objekt gespeicherten elektromagnetischen Strahlung durch Aufsummieren der Energie der einzelnen Moden.

(a) Energie einer stehenden elektromagnetischen Welle:

klassische Energiedichte:

- Energie ist gleichverteilt zwischen elektrischem Feld E und magnetischem Feld B.
- Die Energie einer Mode ist proportional zur Feldamplitude (*E*₀, *B*₀), kann also beliebige Werte annehmen.

statistische Physik: Die mittlere Energie einer Mode beträgt im thermischen Gleichgewicht nach dem Gleichverteilungssatz $k_B T/2$ pro Freiheitsgrad.

→ Rayleigh-Jeans Gesetz

Quantenmechanik:

Die Energie einer Mode ist in Photonen der Energie hv quantisiert. Die Anzahl der Photonen in einer Mode wird durch die Bose-Einstein Verteilungsfunktion f_{BE} bestimmt.

→ Plancksches Strahlungsgesetz

(b) Anzahl der Moden und Modendichte in 1D:

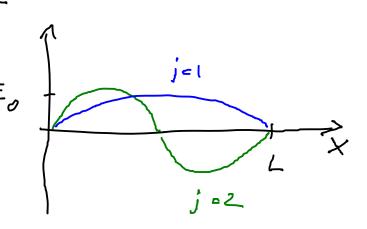
Resonanzbedingung:

$$j = 1,2,3...$$

Modenindex *j*:

$$j = \frac{2L}{\lambda_j} = \frac{2C}{C} v_j$$

• niedrigste mögliche Frequenz



Anzahl J der Moden bis zur Frequenz ν :

• Spektrale Modendichte g(v): Anzahl Moden dJ pro Frequenzintervall dv

$$g(v) = \frac{d}{dv} = \frac{2L}{c} = const.$$

Moden sind gleichverteilt in der Frequenz

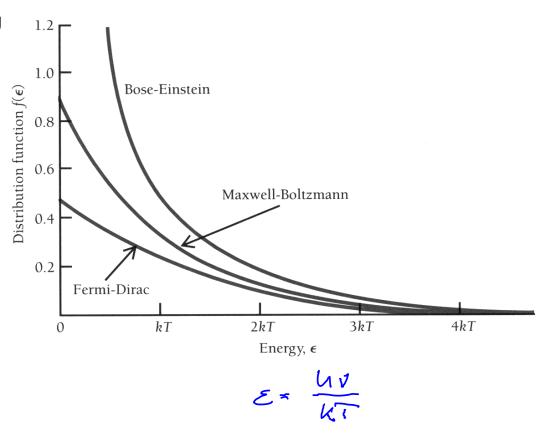
• (c) Energie U(v) im Frequenzintervall dv in statistischer Näherung (**Rayleigh-Jeans**):

- die Energie des 1D schwarzen Strahlers ist in dieser N\u00e4herung in der Frequenz gleichverteilt
- sie ist proportional zur Temperatur T (gilt nur für $hv < k_BT$)
- Energie U(v) im Frequenzintervall dv nach Planck:

Energiedichte u(v) (1D, pro Länge L):

3.5.2 Quantenmechanische Energie und Besetzung der Moden

- Plancksche Hypothese: Die in jeder Mode gespeicherte Energie E = n h v ist in Einheiten der Photonenergie h v quantisiert.
- *n* ist die Anzahl der Photonen in einer Mode (vgl. quantenmechanischer harmonischer Oszillator, siehe spätere Vorlesung).
- Die Besetzung der verschiedenen zur Verfügung stehenden Moden des Hohlraums mit Photonen wird durch die Bose-Einstein Verteilungsfunktion f_{BE} beschrieben.



3.5.3 Berechnung der Energiedichte für einen 3D schwarzen Strahler:

- Die Wände eines kubischen Hohlraums mit Volumen L^3 und Kantenlänge L seien perfekte Reflektoren.
- Dann muss die elektromagnetische Strahlung im Hohlraum stehende Wellen bilden.
- Resonanzbedingung entlang der Koordinate i.

$$j: \frac{\lambda_{i}}{2} = L_{i}$$
 $j: = 1, 2, 3, ...$
 $i = 2L_{i}$
 $j: = 1, 2, 3, ...$

- Modenindex j_i zur Richtung i = x, y, z
- Für eine stehende Welle der Wellenlänge λ entlang einer beliebigen Richtung gilt (Resonanzbedingung)

$$j^{2} = j_{x}^{2} + j_{5}^{2} + j_{5}^{2} = (2U)^{2} = (2U)^{2}$$

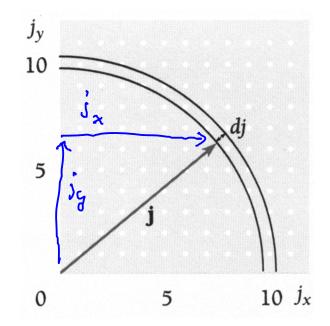
anit $j_{x,j_{5},j_{2}} \in [12,3,..]$

• Anzahl J der Moden mit Wellenlänge kleiner als λ_j (Frequenz groesser als ν_j)

$$\int = \frac{1}{8} \frac{1}{2} \frac{4\pi}{3} \frac{3}{3} = \frac{8\pi}{3} \frac{13}{63} \frac{3}{3}$$

positive j_i

2 Polarisationen



• Zahl der Moden g(v) pro Frequenzintervall dv.

$$g(v) = \frac{dJ}{dv} = 8\pi \frac{L^3}{c^3} v^2$$

Modendichte G(v) (Zahl der Moden pro Volumen $V = L^3$) pro Frequenzintervall dv:

$$G(v) = \frac{g(v)}{L^3} = \frac{8\pi}{C^3} v^2$$

- quadratische Abhängigkeit von der Frequenz v
- unabhängig von der Form des Hohlraums

3.5.4 Rayleigh-Jeans Gesetz

Berechnung des Spektrums unter Annahmen der **klassischen Physik**: Jede Mode hat zwei Freiheitsgerade, die wie ein harmonischer Oszillator beschrieben werden können.

Gleichverteilungssatz: Im thermischen Gleichgewicht bei der Temperatur T trägt jede Mode die Energie k_BT zur Gesamtenergie eines Systems bei.

Energiedichte u(v) der elektromagnetischen Strahlung im Hohlraum pro Frequenzintervall dv.

Dieses nach Rayleigh-Jeans benannte Gesetz für die Energiedichte eines schwarzen Strahlers ist nur für Frequenzen $h\nu$, die klein sind gegenüber der Temperatur kT, gültig.

u(v) divergiert für grosse Frequenzen v (Ultraviolettkatastrophe) und muss daher falsch sein. Dieses Problem kann nur mit Hilfe der Quantenmechanik gelöst werden.

3.5.5 Plancksches Strahlungsgesetz:

 Die Gesamtenergiedichte u(v) pro Frequenzintervall dv ergibt sich dann zu:

$$(10) = hv G(v) f(v)$$

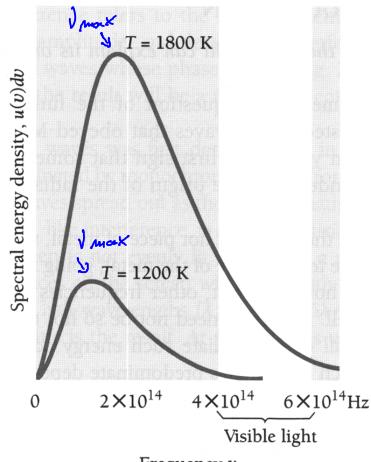
$$= \frac{8\pi h}{c^3} \frac{v^3}{4v/a\tau}$$

Dies ist das **Plancksche Strahlungsgesetz.** Es beschreibt das Spektrum der elektromagnetischen Strahlung eines jeden Körpers (Sonne, Glühbirnen, ...) im thermischen Gleichgewicht bei der Temperatur *T*.

Eine weitere Herleitung dieses Gesetzes (nach Einstein) wird im Zusammenhang mit dem Laser diskutiert.

Charakteristische Eigenschaften des Spektrums:

- temperaturabhängiges Maximum der Energiedichte bei v_{max}
- Anstieg von u(v) proportional zu v^2 bei niedrigen Frequenzen $v < v_{max}$
- o exponentieller Abfall von u(v) mit e^{-v} bei hohen Frequenzen $v > v_{max}$
- o temperaturabhängiges Maximum der Energiedichte bei v_{max}
- Gesamtenergie integriert über alle Frequenzen skaliert mit T⁴



Frequency, v

3.5.6 Das Wiensche Verschiebungsgesetz:

- Bestimme die Wellenlänge bei der ein schwarzer Strahler ein Maximum an Energie abstrahlt.
 - drücke das Strahlungsgesetz in der Wellenlänge λ aus
 - finde Maximum

$$\frac{du(\lambda)}{d\lambda} = 0 \Rightarrow \lambda = \lambda_{max}$$

Wiensches Verschiebungsgesetz:

- Maximum der Strahlungsemission verschiebt sich mit steigender Temperatur T zu niedrigeren Wellenlängen λ_{max} .
- Schwarze Strahler bei einigen 1000 Grad emittieren im sichtbaren Wellenlängenbereich, während Körper bei Raumtemperatur vorwiegend im Infraroten emittieren.
- Beispiel: Sonne

• Anwendung Pyrometrie: Bestimmung der Temperatur eines Objekts aus Messung des Strahlungsspektrums

3.5.7 Stefan-Boltzmann Gesetz

Bestimme die gesamte Energiedichte eines schwarzen Strahlers bei Temperatur T

$$u = \int_{3}^{8} u(y) dy = \frac{8\pi^{5}k^{4}}{15c^{3}k^{3}} + \frac{\pi^{4}}{15c^{3}k^{3}} = a + \frac{\pi^{4}}{15c^{3}k^{3}}$$

- mit der universellen Konstanten a
- starke Abhängigkeit von der Temperatur T

Die von einem Objekt pro Zeiteinheit und Oberfläche abgestrahlte Energie R ist proportional zu T^4 . Diese Abhängigkeit wird **Stefan-Boltzmann Gesetz** genannt.

mit der Stefan Konstanten σ :

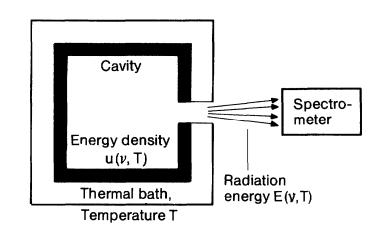
$$\sigma = \frac{ac}{4} = 5.67 \times 10^{-8} \frac{W}{m^2 k^4}$$

und dem Emissionskoeffizienten e des Strahlers, der von e = 0.07 für polierten Edelstahl bis zu e = 0.97 für matte schwarze Oberflächen variiert.

Vorlesungsexperiment: Leslie-Würfel

3.5.8 Energiedichte u(v) dv und Strahlungsflussdichte P(v) dv

- Definition: Energiedichte u(v) dv
 - $u(v) dv = \text{Strahlungsenergie im Frequenzbereich } v \dots v + dv \text{ pro}$ Volumen V
- Definition: spektrale Energiedichte u(v):
 - u(v) = Strahlungsenergie pro Volumen V und pro Frequenzintervall dv

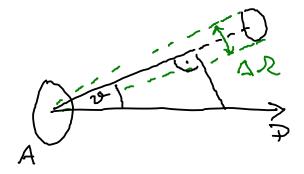


Messgrösse: Strahlungsflussdichte P(v)

 $P(v) dv = \text{Strahlungsleistung im Frequenzbereich } v \dots v + dv \text{ pro Raumwinkel und pro Fläche}$

Energie E die von einem schwarzen Strahler mit Fläche A pro Zeitintervall Δt in ein Raumwinkelelement $\Delta \Omega$ unter einem Winkel θ zur Flächennormalen emittiert wird.

$$P(0)d0 = \frac{E(0)d0}{\Delta t}$$



4. Das Elektron

Erzeugung von freien Elektronen: o Photoeffekt

Thermische Emission (Glühemission)

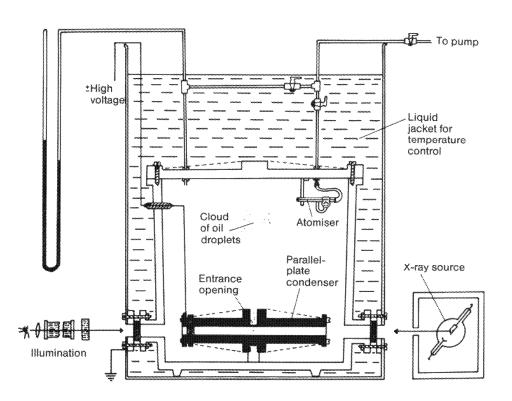
Manipulation von Elektronen:

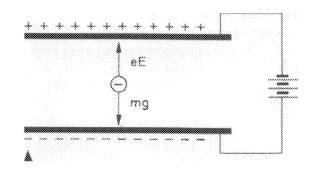
o Beschleunigung, Ablenkung in elektrischen und magnetischen Feldern

4.1 Ladung des Elektrons

Versuch von Millikan: Bestimmung der Ladung des Elektrons

Elektrisch aufgeladene Öltröpfchen in einem elektrischen Feld



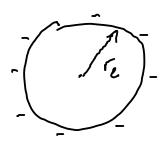


- Kompensation der Gravitationskraft und der Coulomb-Kraft eines geladenen Teilchens im elektrischen Feld eines Kondensators.
- Ladung e des Elektrons:

$$e = -1.602 \ 10^{-19} \ C$$

4.2 Die Grösse des Elektrons

- Bestandteil des Atoms, daher deutlich kleiner als das Atom selber
- Definition des klassischen Elektronenradius



- e⁻ als Kugel mit Radius r_e
- Ruheenergie $E = m_0 c^2$ sei identisch der elektrostatischen Energie der Oberflächen adung

• Kapazität $C = 4 \pi \varepsilon_0 r_e$

$$\frac{1}{2} \frac{e^2}{4\pi \xi_0 \Gamma_e} = m_0 C$$

klassischer Elektronenradius re

- Bestimmung des Elektronenradius durch Streuexperimente
 - o keine Abweichung der e⁻/e⁻ Wechselwirkung vom Coulomb-Gesetz selbst bei kleinen Abständen
 - o Folgerung: Elektronen sind innerhalb der experimentellen Genauigkeit punktförmige Teilchen

4.3 Spezifische Ladung des Elektrons e/m

- Bestimmung von e/m des Elektrons analog zu Massenspektroskopie Experimenten mit Ionen
- Verwendung von elektrischen und magnetischen Feldern.
- allgemeine Bewegungsgleichung:

Zyklotronbewegung des Elektrons

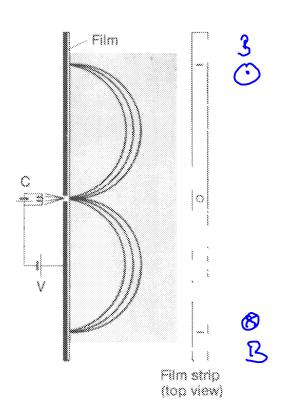
 kreisförmige Bahn in Feld B senkrecht zur Bewegungsrichtung v des Elektrons

Zyklotronradius

- = eB
- Beschleunigung des e-
- $\frac{1}{2}mv^2 = eV = v^2 = \frac{2ev}{m}$

spezifische Ladung

$$\frac{Q}{M} = \frac{2V}{r^2 B^2}$$



4.4 Die Masse des Elektrons

• Bestimmung der Masse *m* aus der spezifischen Ladung *e/m*

$$m_0 = 9.1 \cdot 10^{-31} \text{ kg}$$
 $m_0 = 511 \text{ keV}$

relativistische Masse des Elektrons

 $M(V) = M_0 \sqrt{1 - \frac{V^2}{c^2}}$

• Beispiel:

kinetische Energie

$$\frac{V}{C} = 0.063$$
 $\frac{V}{C} = 0.942$

$$\frac{M-M_0}{M_0} = 4 \cdot 10^{-3}$$

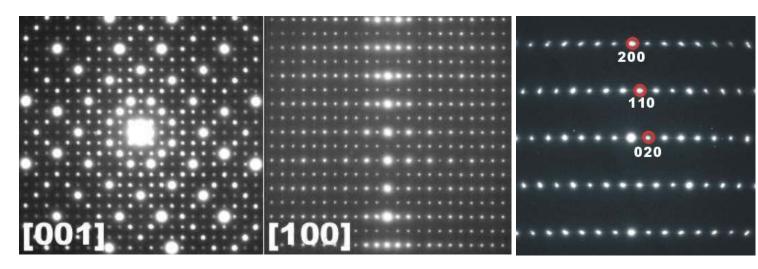
$$\frac{M-M_0}{M_0} = 2$$

4.5 Welleneigenschaften von Elektronen

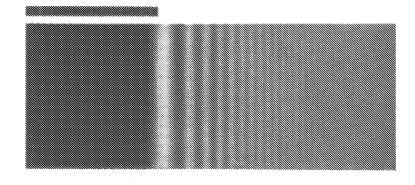
- Bisher: Untersuchung der Teilcheneigenschaften von Wellen
- Elektronen können aber auch Welleneigenschaften zeigen: Beugung, Interferenz
- Bragg-Streuung: Ähnlich wie Röntgenstrahlen können langsame Elektronen Bragg-Interferenzen bei Streuung an Oberflächen zeigen.

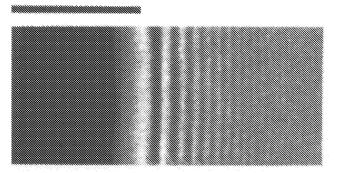
Moderne Elektronenbeugungsmessungen

- Elektronenbeugung wird in der Festkörperphysik zur Untersuchung der Kristallstruktur verwandt.
- Die Technik ist besonders gut für Oberflächen geeignet.
- Beispiel: Streumuster von Elektronen an Einkristallen



Beugung von Licht an einer Kante





Beugung von Elektronen ($E_{kin} = 34 \text{ keV}$) an der Kante einer Al-Folie

weiter Abbildungen: http://www.microscopy.ethz.ch/
http://www.emez.ethz.ch/

4.6 Elektron Streuung: Experiment von Davisson und Germer

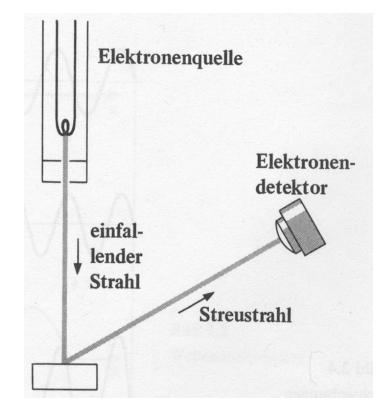
 Bestätigung des Wellencharakters von Teilchen (deBroglie Wellen) in Streuexperimenten mit Elektronen durch Davisson und Germer und unabhängig durch Thomson (1927)

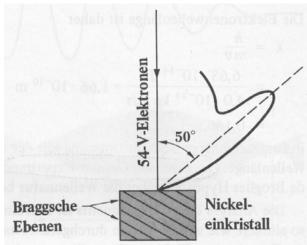
Nobelpreis in Physik (1937)

Clinton Joseph Davisson George Paget Thomson

"for their experimental discovery of the diffraction of electrons by crystals"

- klassische Erwartung: Die Intensität der gestreuten Elektronen sollte nur schwach von Streuwinkel und der Energie der einfallenden Elektronen abhängen.
- Beobachtung: starke Energie und Winkelabhängigkeit der Streuung





Nickeleinkristall mit durch Aufheizen oxidfreier einkristalliner Oberfläche

4.7 deBroglie Wellen

Elektronen (und alle anderen massiven Teilchen) verhalten sich wie Wellen mit der Wellenlänge

Abhängigkeit der Elektronwellenlänge von der Energie

$$\lambda = \frac{G}{P} = \frac{G}{m V} = \frac{G}{\sqrt{2mE_{R}}}$$

$$\lambda = \frac{12.3}{A} A$$

zum Beispiel bei 54 V: $\lambda = 0.167$ nm; entspricht typischen Gitterkonstanten a

Bragg-Bedingung für Materiewellen

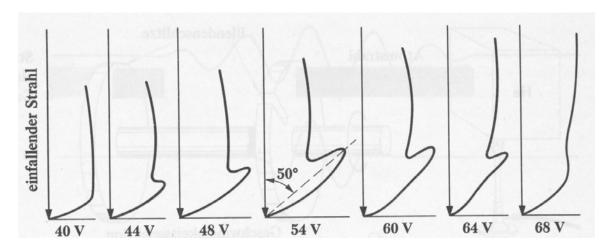
Winkel unter dem konstruktive Interferenz auftritt:

$$M\lambda = 2a sim \theta$$

$$\Theta = arc sim \frac{M\lambda}{2a}$$

$$= arc sim \frac{h}{2a}$$

Davisson/Germer Experiment:



lange Wellenlänge grosser Streuwinkel

kurze Wellenlänge kleiner Streuwinkel