8. Grundlagen der Quantenmechanik

Erfolge des Bohr-Modells:

- Erklärung grundlegender Eigenschaften des Spektrums des Wasserstoff-Atoms unter Annahme der Existenz von Materiewellen
- erklärt auch Wasserstoff-ähnliche Einelektron-Atome

Bohr-Modell reicht nicht aus zur Erklärung:

- der Einzelheiten des Spektrums des Wasserstoff-Atoms
 - relative Intensitäten von Spektrallinien
 - Aufspaltung der Spektrallinien in elektrischen/magnetischen Feldern
- von einfachen Mehrelektron-Atomen (z.B. Helium: 2 Elektronen ein Kern)
- der Struktur des periodischen Systems der Elemente
- der Bindung zwischen einzelnen Atomen
- der physikalischen oder chemischen Eigenschaften von einzelnen Atomen

1925-26: Entwicklung der Quantenmechanik

- Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Dirac und andere entwickeln einen weiterführenden Ansatz um die Eigenschaften von mikroskopischen Systemen (z.B. Atomen) zu erklären: Die Quantenmechanik.
- Ziel: Entwicklung einer Theorie, die die Welleneigenschaften von Teilchen korrekt beschreibt:

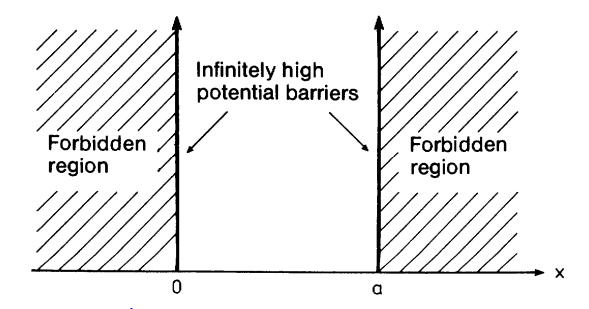
schon bis in die 1930er Jahre:

- eine grosse Anzahl von Beobachtungen und Experimenten in der Physik und der Chemie können mit Hilfe der Quantenmechanik erklärt werden
- bis heute hat noch kein Experiment den Vorhersagen der Quantenmechanik widersprochen
- die Quantenmechanik ist eine der erfolgreichsten Theorien überhaupt

8.1 Teilchen in einem Potentialtopf

ein weiteres Beispiel zur Lösung eines quantenmechanischen Problems mit dem Postulat der Materiewellen

- betrachte ein einzelnes Teilchen (z.B. ein Elektron) in einem 1D Potentialtopf
- die Bewegung des Teilchens entlang der x-Richtung ist durch harte Wände in den Positionen x = 0 und x = a eingeschränkt
- diese Tatsache wird durch eine Potential U mit U = 0 für 0 < x < a und $U = \infty$ an allen übrigen Orten beschrieben
- betrachte Teilchen als Materiewelle



für freies Teilchen:

de Broglie

$$E = \hbar \omega = \mu \lambda$$

$$\rho = \hbar \lambda = \frac{\mu}{\lambda}$$

klassische Beziehung zwischen Energie und Impuls

$$E = \rho^2 / 2m_0 \Rightarrow \rho = \pm \sqrt{2m_0 E}$$

• mögliche dem Impuls p zugeordnete Werte des Wellenvektors k

$$k = \frac{P}{t} = \frac{1}{t} \sqrt{2mE}$$

stehende Welle als Superposition zweier Materiewellen

$$\Psi(x,t) = (C_1 e^{ikx} + C_2 e^{-ikx}) e^{-i\omega t}$$

$$- \Psi(x) e^{-i\omega t}$$

Randbedingungen für Materiewelle im Potentialtopf

$$f(0) = 0 \Rightarrow C_1 + C_2 = 0$$

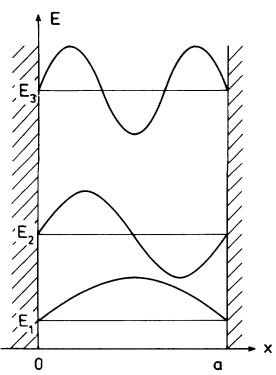
$$f(x) = 2i C_1 sim(kx)$$

$$f(\alpha) = 0 \Rightarrow Sim k\alpha = 0$$

$$k = n \frac{\pi}{\alpha}$$

Energie des Teilchens mit dieser Quantisierungsbedingung:

$$E = \frac{t^2}{2m_0} \left(u \frac{\pi}{\alpha} \right)^2$$



Bestimmung der Konstanten C₁:

Normierungsbedingung:

$$\int \psi'(k) \psi(k) dk = 1$$

$$\Rightarrow C_1 = \frac{1}{\sqrt{2\alpha}}$$

• zur Quantenzahl *n* gehörende Wellenfunktion:

$$P_{M} = \sqrt{\frac{2}{\alpha}} i Sim \left(m \times \frac{\pi}{\alpha} \right)$$

$$= \frac{1}{\sqrt{2\alpha}} \left(e^{i m \pi} \times - e^{-i \frac{m \pi}{\alpha}} \times \right)$$

$$= \sqrt{\frac{1}{\sqrt{2\alpha}}} \left(e^{i m \pi} \times - e^{-i \frac{m \pi}{\alpha}} \times \right)$$

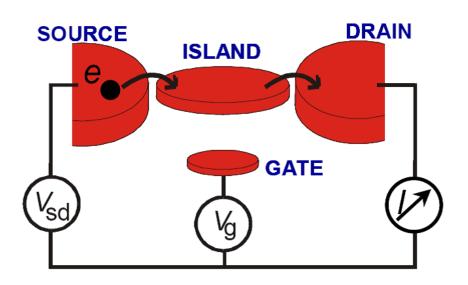
Überlagerung zweier *k*-Vektoren mit unterschiedlichem Vorzeichen also zweier Impulse *p* mit unterschiedlicher Richtung

$$k = \frac{n\pi}{\alpha}$$
 $k = -\frac{n\pi}{\alpha}$

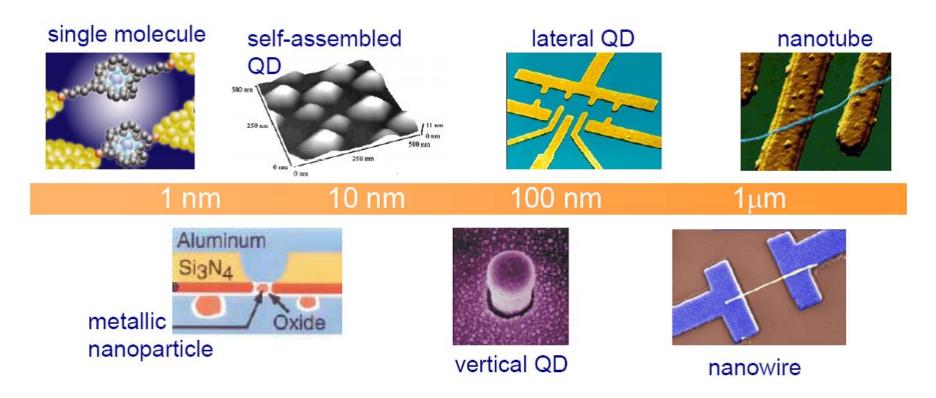
Quantenpunkte

Aufbau:

- kleine metallische oder halbleitende Insel für Elektronen
- diskrete Elektron-Energieniveaus
- Kopplung an Elektronen-Quelle (source) oder Senke (drain) durch Tunnelkontakte
- Kopplung an Gatter-Elektrode zur Einstellung der Anzahl Elektronen

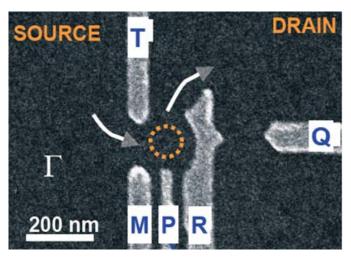


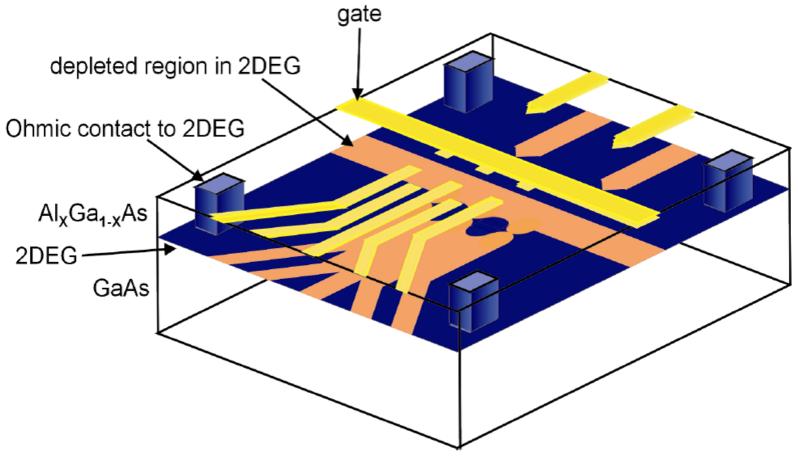
verschiedene physikalische Realisierungen von Quantenpunkten:



Elektrostatisch definierte Quantenpunkte in zweidimensionalen Elektronengasen (2DEG)

- Isolierung einzelner Elektronen auf einem Chip
- elektrische Kontrolle einzelner Elektronen
- elektrische Messung einzelner Elektronen





8.2 Die Wellenfunktion

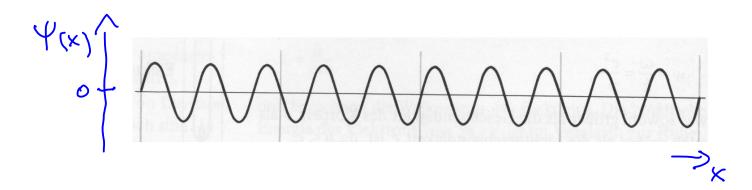
• allgemeine Einführung einer komplexen Wellenfunktion ψ zur Beschreibung der quantenmechanischen Eigenschaften eines Teilchens

$$\varphi = A + iB \qquad i = \sqrt{-1} ; i^2 = -1$$

Das Quadrat des Betrags von \(\psi \) ausgewertet an einer gegebenen Koordinate \(x \) ist proportional zur
 Wahrscheinlichkeitsdichte \(P \) das Teilchen an dem Ort \(x \) zur Zeit \(t \) zu finden

• ψ * ist die zu ψ komplex konjugierte Wellenfunktion

ebene Welle



Eigenschaften der Wellenfunktion ψ

Normierung der Wellenfunktion: Für ein Teilchen mit gültiger Wellenfunktion ψ und Wahrscheinlichkeitsdichte $|\psi|^2$ muss die Gesamtwahrscheinlichkeit das Teilchen an einem beliebigen Ort im Raum zu finden gerade gleich 1 sein. Dann ist die Wellenfunktion normiert.

$$\int |\Psi|^2 dV = \int \rho dV = P = 1$$

- die Wellenfunktion ψ ist **eineindeutig** und **stetig**
- die Ableitungen der Wellenfunktion ψ sind ebenfalls **eineindeutig** und **stetig**

räumliche Aufenthaltswahrscheinlichkeit eines Teilchens (in einer Dimension):

Wellenpaket

