# 8. Eindimensionale (1D) quantenmechanische Probleme

## 8.1 Potentialtopf mit endlich hohen Wänden:

- alle realen Potentialtöpfe haben endlich hohe Wände
- 1D Potentialtopf mit U = 0 für 0 < x < L und  $U = U_0 < \infty$  an allen anderen Orten
- betrachte ein gebundenes Teilchen mit Energie  $E < U_0$  niedriger als die Tiefe des Potentialtopfs
- zugehörige Schrödinger-Gleichung

$$-\frac{t^{2}}{2m}\frac{3}{9x^{2}}\Psi + 40\Psi = E\Psi$$

$$= \left[\frac{t^{2}}{2m}\frac{3^{2}}{9x^{2}} + (E-40)\right]\Psi = 0$$

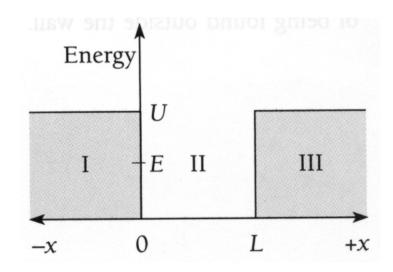
$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$



Drei Bereiche des Problems:

• Bereich II: *U* = 0

• Bereich I und III:  $U_0 > E$ 

#### Lösungen:

# allgemeine Lösung:

• in Bereich I und III:

$$\psi_{\underline{T}} = Ce^{\alpha x} + De^{-\alpha x} - \infty < x < 0$$

$$\psi_{\underline{m}} = Fe^{\alpha x} + Ge^{-\alpha x} \qquad \qquad L < x < \infty$$

D = F = 0: sonst Divergenz von  $\psi$ 

• in Bereich II:

$$\psi_{\overline{1}}(x=0) = \psi_{\overline{1}}(x=0) = C \quad \text{stetige Wellen funktion } \psi$$

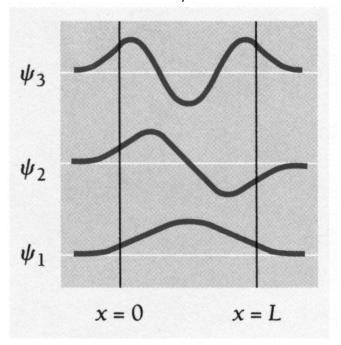
$$\psi_{\overline{1}}(x=L) = \psi_{\overline{1}}(x=L)$$

$$\frac{\partial \psi_{\overline{1}}}{\partial x}(x=0) = \frac{\partial \psi_{\overline{1}}}{\partial x}(x=0) \quad \text{stetiger Impuls } (\sim \psi)$$

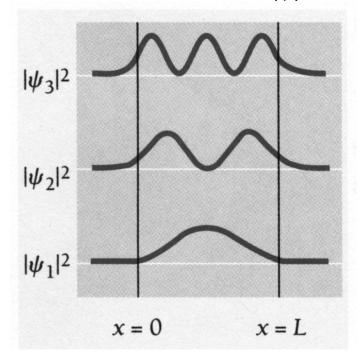
$$\frac{\partial \psi_{\overline{1}}}{\partial x}(x=L) = \frac{\partial \psi_{\overline{1}}}{\partial x}(x=L)$$

# Wellenfunktionen eines Teilchens in einem endlichen Potentialtopf

Wellenfunktionen  $\psi$ .



Wahrscheinlichkeitsdichten  $|\psi|^2$ :



- das Teilchen dringt in die Wand des Potentialtopfs ein
- Teilchen dauerhaft gebunden für  $E < U_0$

**Fragen**: ○ Wie erzeugt man einen Potentialtopf?

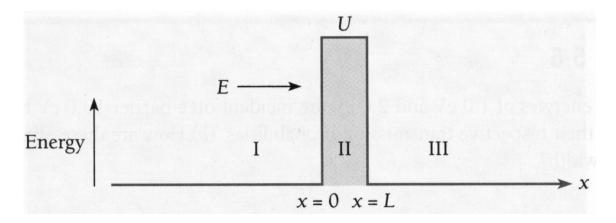
- Wie lädt man ein einzelnes Teilchen in einen Potentialtopf?
- Wie verlässt das Teilchen den Potentialtopf?

# physikalische Beispiele für Teilchen im Potentialtopf:

Quantenpunkte

#### 8.2 Der Tunnel-Effekt

ein Teilchen mit kinetischer Energie E trifft auf eine Potentialbarriere mit Höhe U<sub>0</sub> > E und Breite L



- nach den Regeln der klassischen Physik kann das Teilchen die Barriere nicht überwinden
- quantenmechanisch kann das Teilchen die Barriere durchdringen und sich auf der anderen Seite der Barriere weiter fortbewegen
- dieser quantenmechanische Effekt wird Tunneln genannt

# Beispiele:

- Erzeugung von  $\alpha$ -Teilchen in radioaktiven Zerfällen: Ein  $\alpha$ -Teilchen tunnelt durch die Barriere des Bindungspotentials
- Tunnelkontakte, Tunneldioden: Elektronen tunneln zwischen zwei Metall-Elektroden durch eine isolierende Barriere
- Tunnel-Effekte in komplexen Systemen:
   Ein durch eine effektive Koordinate beschriebenes Objekt tunnelt durch eine Potential-Barriere

## 8.2.1 Näherungslösung

• die Transmissionswahrscheinlichkeit *T*, dass ein von links (Bereich I) einfallendes Teilchen durch die Barriere (Bereich II) tunnelt und sich weiter nach rechts (Bereich III) ausbreitet, ist gegeben durch

$$T = e^{-2kL} \quad mit \quad k_{II} = \sqrt{2m(k-E)}$$

• T hängt von der Barrierenbreite L, dem Unterschied zwischen der kinetischen Energie des Teilchens und der Barrierenhöhe  $(U_0-E)^{1/2}$  und der Masse des Teilchens m<sup>1/2</sup> ab

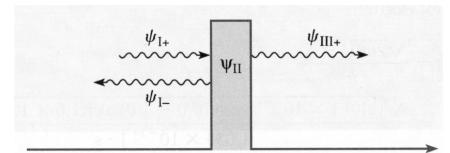
#### Beispiel:

• ein Elektron mit kinetischer Energie E = 1 eV tunnelt durch eine Barriere der Höhe  $U_0 = 10 \text{ eV}$  und Breite L = 0.5 nm. Wie gross ist die Transmissionswahrscheinlichkeit T?

- selbst für leichte Teilchen und niedrige Barrieren ist T klein
- der Tunneleffekt kann experimentell beobachtet werden und wird z.B. in elektronischen Bauelementen angewandt

## 8.2.2 Berechnung der Tunnelrate *T*

Schrödinger-Gleichung außerhalb der Barriere (Bereiche I und III)



identisch für  $\psi_{III}$ 

Lösungen

mit 
$$k_1 = \sqrt{2mE} \frac{\rho}{t_1} = \frac{etr}{\lambda}$$

einfallende Welle

 $\Psi_{I+} = A e^{ik_i x}$  • reflektierte Welle  $\Psi_{I-} = B e^{-ik_i x}$ 

transmittierte Welle

• Fluss S der mit Gruppengeschwindigkeit V<sub>I+</sub> einfallenden Teilchen

• Transmissionswahrscheinlichkeit *T* ist das Verhältnis des einfallenden zum transmittierten 😁 😑 **Teilchenfluss** 

$$\frac{|\Psi_{\overline{u}}+|^2 V_{\overline{u}}}{|\Psi_{\overline{z}}+|^2 V_{\overline{z}}} = \frac{\overline{T}F^*}{AA^*} \frac{V_{\overline{u}}}{V_{\overline{z}}}$$

## Schrödinger-Gleichung im Bereich der Barriere:

$$-\frac{t^2}{2m}\frac{3^2}{3x^2}\Psi_{\overline{I}} + (u-E)\Psi_{\overline{I}} = 0$$

• Lösung für U > E

$$\Psi_{\underline{I}} = Ce^{-k_{\underline{I}}\times} + De^{k_{\underline{I}}\times}$$
 mit  $k_{\underline{I}} = \frac{\sqrt{2m(k-\underline{E})}}{t_{\underline{I}}}$ 

- exponentiell ansteigende oder abfallende Wellenfunktion  $\psi_{II}$  (keine Oszillationen)
- $\psi_{II}$  ist keine Lösung eines freien Teilchens
- dennoch verschwindet die Aufenthaltswahrscheinlichkeit  $|\psi_{II}|^2$  in der Barriere nicht

## Randbedingungen:

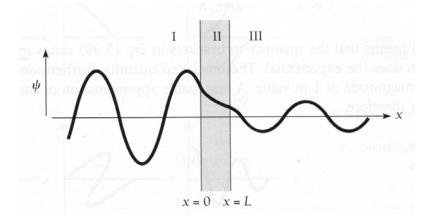
• am linken Rand der Barriere (x = 0)

• am rechten Rand der Barriere (x = L)

- Löse 4 Gleichungen für die vier Koeffizienten und drücke sie relative zu A aus (|A|² ist proportional zum einfallenden Teilchenfluss)
- graphische Darstellung der Lösung

$$\frac{1}{34^{\frac{1}{12}}} = \frac{3\times}{34^{\frac{11}{12}}}$$

$$\frac{3\times}{34^{\frac{11}{12}}} = \frac{3\times}{34^{\frac{11}{12}}}$$



# Bestimme A/F aus den Randbedingungen

$$\frac{A}{\mp} = \left[\frac{1}{2} + \frac{i}{4} \left(\frac{k_{\overline{x}}}{\kappa_{i}} - \frac{\kappa_{i}}{\kappa_{\overline{x}}}\right)\right] e^{\left(ik_{i} + k_{\overline{x}}\right)L} + \left[\frac{1}{2} - \frac{i}{4} \left(\frac{k_{\overline{x}}}{\kappa_{i}} - \frac{k_{i}}{\kappa_{\overline{x}}}\right)\right] e^{\left(ik_{i} - k_{\overline{x}}\right)L}$$

## Vereinfachungen:

 betrachte im Verhältnis zur kinetischen Teilchen-Energie E hohe Potentialbarriere U

$$\frac{K_{\overline{L}}}{K_{\overline{L}}} > \frac{K_{\overline{L}}}{K_{\overline{L}}} > \frac{K_{\overline{L}}}{K_{\overline{L}}} \sim \frac{K_$$

• betrachte breite Barriere  $(k_{\parallel}L > 1)$ 

Daher:

$$\frac{A}{R} = \left(\frac{1}{2} + \frac{ik_{\pi}}{4\kappa_{\epsilon}}\right) e^{(ik_{\epsilon} + k_{\pi})L}$$

Transmissions-Koeffizient:

 T kann aus Teilchenfluss durch eine Tunnelbarriere experimentell bestimmt werden (z.B. ein elektrischer Strom)

$$= \frac{16}{4 + \left(\frac{k_{\mathcal{L}}}{\kappa_{i}}\right)^{2}} = 2k_{\mathcal{L}}$$

$$\begin{cases} \left| \frac{k_{\text{T}}}{k_{\text{T}}} \right|^{2} & \frac{U-E}{E} \\ \left| \frac{k_{\text{T}}}{k_{\text{T}}} \right|^{2} & \frac{U-E}{E} \\ \left| \frac{k_{\text{T}}}{k_{\text{T}}} \right|^{2} & \frac{k_{\text{T}}}{k_{\text{T}}} \\ \left| \frac{k_{\text{T}}}{k_{\text{T}}} \right|^{2} & \frac{$$

# **8.2.3 Das Raster-Tunnel-Mikroskop**Scanning Tunneling Microscope (STM)

eine Anwendung des Tunnel-Effekts in der Mikroskopie

# **Nobel Prize in Physics (1986)**

"for their design of the scanning tunneling microscope"

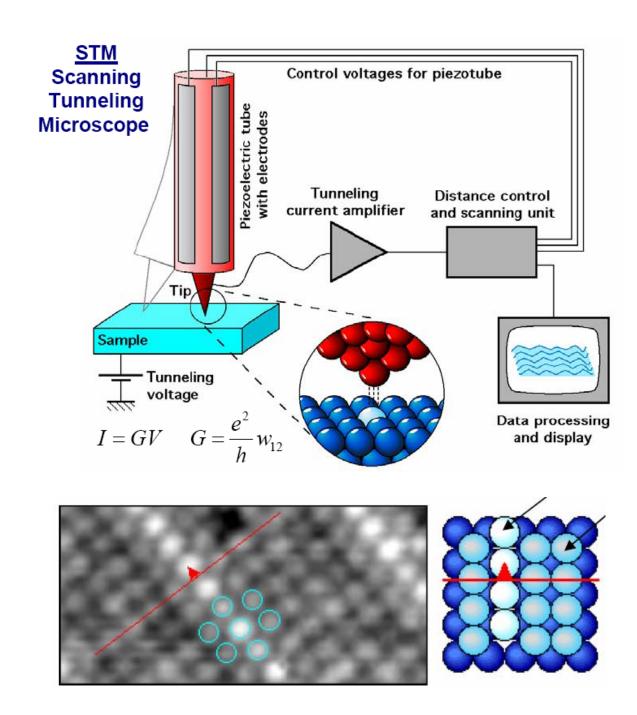


Gerd Binnig



Heinrich Rohrer

geteilt mit Ernst Ruska (Elektronenmikroskop)



# 8.3 Der quantenmechanische harmonische Oszillator

grundlegende Eigenschaften: o Oszillation um einen Ruhepunkt

o lineare Rückstellkraft

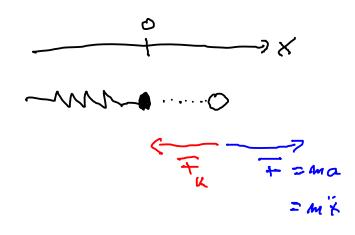
o eine feste von der Amplitude unabhängige Oszillationsfrequenz

Beispiele: o mechanischer Oszillator, z.B. Federpendel

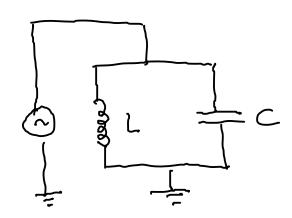
o elektrischer Oszillator, z.B. LC-Schwingkreis

o (zweiatomige) Moleküle

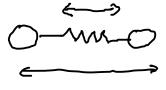
o Gitterschwingungen in einem Kristall



Masse an einer Feder



elektrischer Oszillator



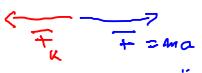
zweiatomiges Molekül

# 8.3.1 Die Bewegungsgleichung



- harmonische Oszillation verlangt lineare Rückstellkraft
- → X Hookesches Gesetz

• Bewegungsgleichung des harmonischen Oszillators



$$m \frac{3x}{3t^2} + kx = 0 \qquad \text{for } x(t)$$

<sup>→</sup> M → allgemeine Lösung

• Frequenz des Oszillators

$$\mathcal{J} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

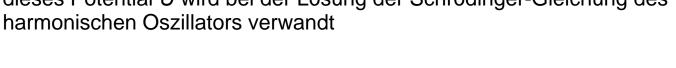
Bemerkung: o in vielen physikalischen Systemen ist die Rückstellkraft nicht strikt linear in der Auslenkung, besonders für grosse Auslenkungen

- o für kleine Auslenkungen gilt die Näherung des harmonischen Oszillators jedoch häufig gut
- o betrachte die Taylor-Entwicklung einer beliebigen Rückstellkraft um ihre Ruhelage

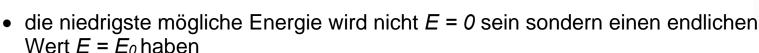
#### 8.3.2 Potential zum Hooke'schen Gesetz

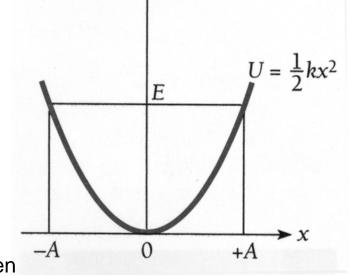
$$U = \int_{0}^{x} -T(x) dx = \int_{0}^{x} kx dx = \frac{1}{2} kx^{2}$$

 dieses Potential U wird bei der Lösung der Schrödinger-Gleichung des harmonischen Oszillators verwandt









**▲** Energy

- das Teilchen wird sich mit endlicher Wahrscheinlichkeit in den Wänden des Potentialtopfs aufhalten (= die maximal möglichen quantenmechanischen Oszillations-Amplituden sind grösser als die klassisch erlaubten)
- Die Schrödinger-Gleichung des harmonischen Oszillators:

$$-\frac{t^2}{2m}\frac{3}{3x^2}\Psi + \frac{1}{2}kx^2\Psi = E\Psi$$

# 8.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators

• Schrödinger-Gl.:

$$\frac{3\psi}{3x^2} + \frac{2m}{t^2} \left( E - \frac{1}{2} kx^2 \right) \psi = 0$$

• Normierung: dimensionslose Einheiten  $\hat{x}$  für die Koordinate x und  $\hat{E}$  für die Energie E

$$\hat{X} = \left(\frac{1}{t_1} \sqrt{k_1}\right)^{1/2} X = \sqrt{\frac{2\pi m V}{t_1}} \times$$

$$\hat{E} = \frac{2E}{t_2} \sqrt{\frac{m}{k}} = \frac{2E}{hV}$$
with  $V = \frac{1}{2\pi \sqrt{m}} \sqrt{\frac{k}{m}}$ 

• somit ergibt sich die Schrödinger-Gleichung zu

$$\frac{3\psi}{3\tilde{x}^2} + (\hat{E} - \hat{x}^2) \psi = 0$$

• Normierungsbedingung für die Wellenfunktion  $\psi$ 

# 8.3.4 Quantisierung der Energie

ullet aus Normierungsbedingung für $\psi$ 

$$\widehat{E} = 2m + 1 = \frac{2E}{hv}$$

$$\widehat{E} = 2m + 1 = \frac{2E}{hv}$$
 mit  $n = 0, 1, 2, 3, ...$ 

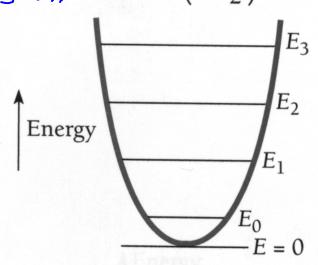
Energie-Niveaus des harmonischen Oszillators

$$E_{N} = h_{J} \left( n + \frac{1}{2} \right) n = 0, 1, 2, 3 \dots$$

• charakteristische Eigenschaft des harmonischen Oszillators: äquidistante Energie-Niveaus

• **Nullpunktsenergie** (n = 0) niedrigste mögliche Energie eines harmonischen Oszillators

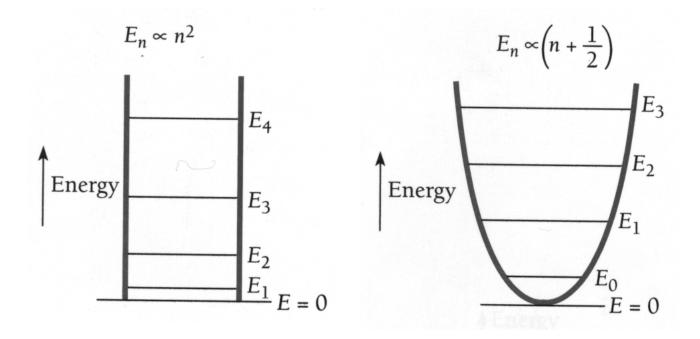
$$E_0 = \frac{1}{2} h v$$

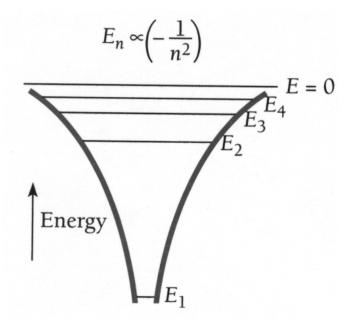


 $E_n \propto \left(n + \frac{1}{2}\right)$ 

# 8.3.5 Energie-Niveaus in verschiedenen charakteristischen Potentialen ...

... und ihre Abhängigkeit von der Hauptquantenzahl n





konstantes Potential:

z.B. Teilchen in einem Potentialtopf

 $x^2$  - harmonisches Potential:

z.B. harmonischer Oszillator

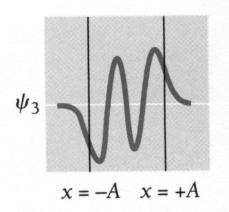
1/r - Zentral-Potential:

z.B. Wasserstoff-Atom

#### 8.3.6 Wellenfunktionen des harmonischen Oszillators

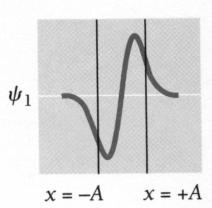
$$\Psi_{m} = \left(\frac{2m\nu}{t_{1}}\right)^{1/4} \left(\frac{m}{2} + \frac{1}{2}\right)^{1/2} H_{m}(\hat{x}) = \frac{2}{2}/2$$
mit  $m = 0, 1, 2, 3, ...$ 

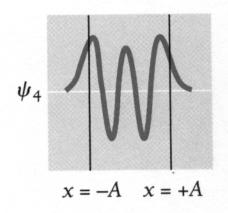
 $\psi_0 = A \quad x = +A$ 



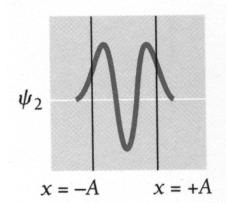
• mit den Hermite-Polynomen H<sub>n</sub>

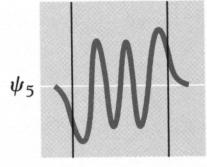
| M | Ha, (x)                | Ê  | En      |
|---|------------------------|----|---------|
| 0 | 1                      | t  | 1/2 4 V |
| 1 | 2 x                    | 3  | 3/2 h1  |
| 2 | 42-2                   | 5  | 5/2 41  |
| 3 | 8 \$ 3 ~ 12 £          | 7  | 7/241   |
| ų | 16x4 -46x2 +12         | 9  | 9/2 42  |
| 5 | 32 x 5 - 16. x + 120 x | 11 | 11/2 hv |





- die vertikalen Linien entsprechen den klassischen maximalen Oszillationsamplituden bei der gegebenen Energie
- quantenmechanisch hält sich der Oszillator mit endlicher Wahrscheinlichkeit außerhalb dieser klassischen Grenzen auf





# 8.3.7 Erwartungswert der Position, klassisch und quantenmechanisch

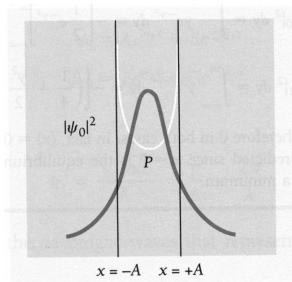
#### klassisch:

• grösste Aufenthaltswahrscheinlichkeit an den klassischen Umkehrpunkten ( $x = \pm A$ ) des Oszillators

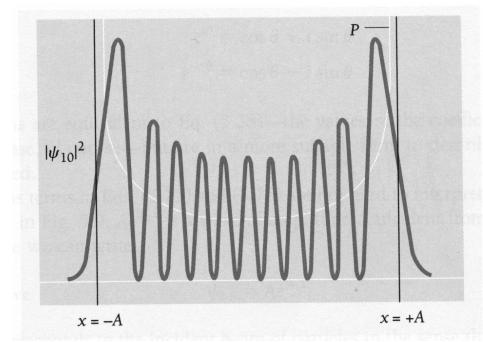
## quantenmechanisch:

- im Grundzustand (n = 0) ist  $|\psi|^2$  am grössten in der Ruhelage (x = 0)
- für steigende Hauptquantenzahl *n* nähert sich die Wahrscheinlichkeitsverteilung der klassischen an
- Beispiel für das Korrespondenzprinzip für grosse Energien und Quantenzahlen
- die Wahrscheinlichkeit des quantenmechanischen Oszillators sich bei Amplituden grösser als ± A aufzuhalten sinkt mit steigender Hauptquantenzahl n

n = 0:



n = 10:

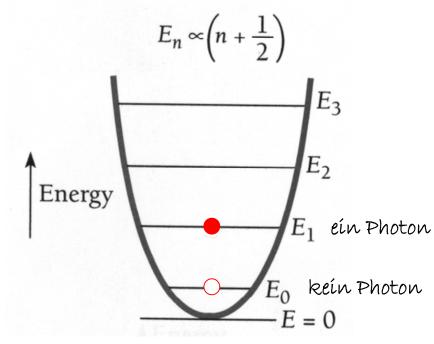


# 8.3.8 Beispiele für quantenmechanische harmonische Oszillatoren

## Hohlraum Quanten-Elektrodynamik (Cavity QED)

stehende Welle = Mode = harmonischer Oszillator

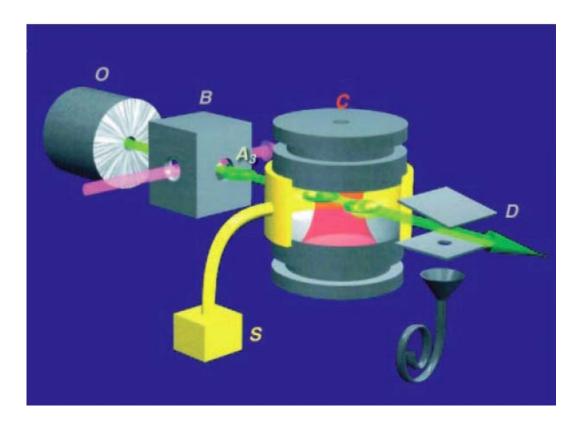
Übersichtsartikel: J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

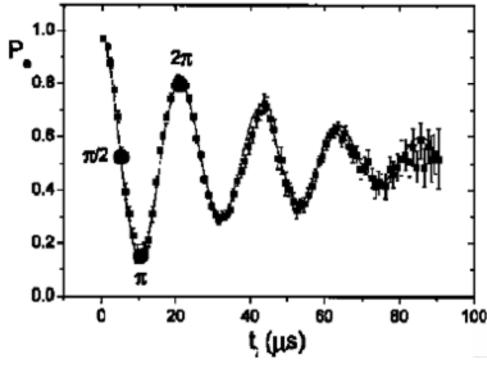


Photonen beschrieben als quantenmechanische Anregungen eines harmonischen Oszillators:

- einzelne Photonen eingefangen zwischen Spiegeln (blau) (eine Hohlraum für Photonen)
- stehende elektromagnetische Welle mit einem einzelnen Photon (rot)
- einzelnes Atom (grün) als Quelle und Detektor für einzelne Photonen

## Hohlraum Quantenelektrodynamik (QED) mit Rydberg-Atomen





#### Aufbau:

- Ofen (O) zur Erzeugung von freien Atomen
- Wechselwirkung mit Lasern (B) erzeugt Rydberg-Zustände
- Hohlraumresonator (C) aus zwei Spiegeln zum speichern von einzelnen Photonen
- Ionisationsdetektor (D)

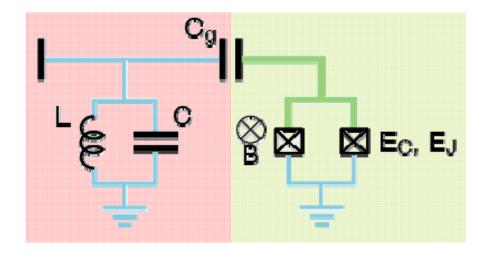
# Beobachtung:

- periodische Emission und Reabsorption eines einzelnen Photons durch ein einziges Rydberg-Atom
- Quantenmechanik mit einzelnen Photonen und einzelnen Atomen.

Thema für Vortrag: Cavity QED (J. M. Raimond, M. Brune, and S. Haroche, ENS, Paris)

# Der elektrische quantenmechanische harmonische Oszillator

schematische Darstellung der elektrischen Schaltung



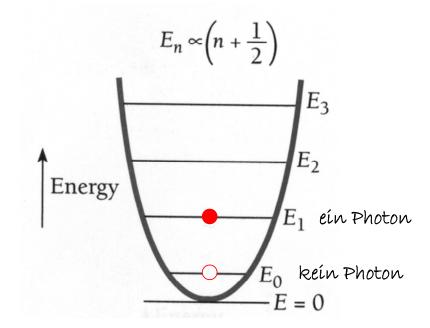
elektrischer harmonischer LC-Schwingkreis:

- Induktivität L
- Kapazität C

elektrisches künstliches Atom (Elektron-Paare im Potentialtopf) mit nicht äquidistanten diskreten Energie-Niveaus:

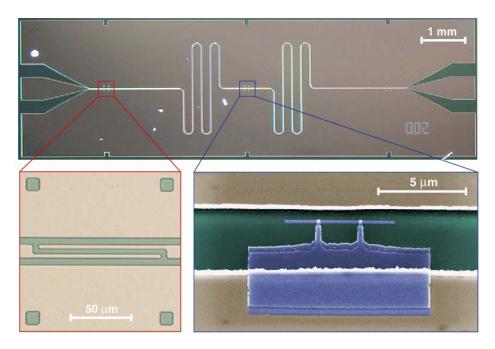
charakteristische Energien

- Ladungsenergie E<sub>C</sub>
- Josephson Energie E<sub>J</sub>



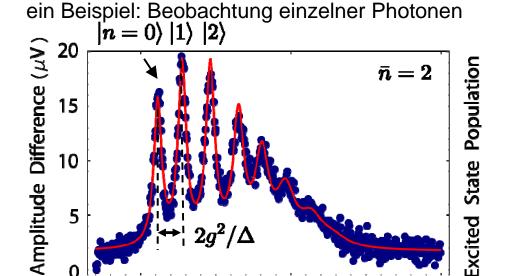
# Experiment: Der erste quantenmechanische harmonische Oszillator in einer elektrischen Schaltung

planarer Wellenleiter als integrierter harmonischer Oszillator



- künstliches Atom (blau)
- harmonischer LC-Oszillator (grau)

A. Wallraff et al., Nature (London) 431, 162 (2004)



• Spektrum eines künstlichen Atoms

6.9

6.95

eine Spektrallinie für jeden Photonzustand
 n = 1, 2, 3, ...

Spectroscopy Frequency,  $v_s$ , (GHz)

6.85

6.75

6.8

 Intensitäten der Linien sind proportional zur Besetzungswahrscheinlichkeit des Zustands

D. Schuster *et al.*, *Nature* **445**, 515 (2007)

einführender Artikel: R. J. Schoelkopf and S. Girvin, Nature (London) 451, 664 (2008)