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Rapid solution of problems by quantum
computation

By Davip DeEvurscu! AND RicHARD Jozsa?t

Y Wolfson College, Oxford OX2 6UD, UK.
28t Edmund Hall, Oxford OX1 4AR, U.K.

A class of problems is described which can be solved more efficiently by quantum
computation than by any classical or stochastic method. The quantum computation
solves the problem with certainty in exponentially less time than any classical
deterministic computation.

The operation of any computing machine is necessarily a physical process.
Nevertheless, the standard mathematical theory which is used to study the
possibilities and limitations of computing (e.g. based on Turing machines) disallows
quantum mechanical effects, in particular the presence of coherent superpositions
during the computational evolution. A suitable notion of a quantum computer, which,
like the Turing machine, is idealized as functioning faultlessly and having an
unlimited memory capacity, but which is able to exploit quantum effects in a
programmable way, has been formulated by one of us (Deutsch 1985). Quantum
computers cannot compute any function which is not turing-computable, but they
do provide new modes of computation for many classes of problem. In this paper we
demonstrate the importance of quantum processes for issues in computational
complexity. We describe a problem which can be solved more efficiently by a
quantum computer than by any classical computer. The quantum computer solves
the problem with certainty in exponentially less time than any classical deterministic
computer, and in somewhat less time than the expected time of any classical
stochastic computer.

Let U be a device that computes a function f: Z,, — Z,. Given an input ¢, U, will,
after some time, output the value of f(i). In general terms the class of computational
task which we shall be considering involves being given U, and then using it to
determine some property G/ f] (that is, some function ¢ of the sequence f(0), f(1), ...,
f(m—1)) in the least possible time.

In the analysis of this type of task, it is often an excellent approximation that the
internal workings of U, are inaccessible, in which case U, is known as an oracle for f.
The approximation would be nearly exact if U, were a new type of physical object
with an unknown law of motion.

If U; were simply a program for evaluating f on our computer, making the
approximation is tantamount to assuming that there is no faster method of obtaining
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@[ f] from the program U, (e.g. by a textual analysis) than actually executing U, to
obtain sufficiently many values f(i) to determine (/[ f]. It seems obvious that this is
true for all properties G — obvious, but like P # NP, hard to prove.

If U, were a roM (read-only memory) containing a sequence of m integers from Z,,,
the approximation is that there is no faster way of obtaining G[f] from U, than
reading from the rowm sufficiently many values f(i) to determine G/[f]. This is clearly
not true in general — there could be physical ways of measuring G[f] directly, like
measuring the total spin if the values of values f(/) were stored as individual spin
values — but it is a good description in many realistic situations.

It is useful to classify computational tasks into evaluations of functions and
solutions of problems. In the case of functions, the task is to obtain the unique output
that is the specified function of the input. For example, U;, as we have defined it,
evaluates the function f. In the case of solving problems the task is to obtain any one
output that has a specified property. For example, to find a factor of a given
composite number is a problem. Finding the least prime factor is a function
evaluation.

When a classical deterministic (Turing) computer solves a problem, it always does
so by evaluating a function. For example, a factorization program will always find
the same factor of a given input. Which factor it finds could be specified by an
additional constraint, narrowing the task to a function evaluation. Therefore when
solving problems a classical computer cannot help performing a harder com-
putational task than the one it was set.

A stochastic computer (i.e. one containing a hardware random number generator)
need not always evaluate functions because the course of its computation, and
therefore its output, need not be uniquely determined by the input. However, this
gives a stochastic computer little advantage over a Turing one in solving problems,
for if every possible output of a stochastic computation has the specified property
that solves the problem, what is the purpose of choosing numbers randomly in the
course of the computation? One reason might be that there is a deterministic
algorithm for solving the problem, which takes a parameter, and the running time
depends on that parameter. If most values of the parameter give a short running
time, but there are exceptional ones, which cannot easily be predicted, which give a
long running time, it might be desirable to choose the parameter randomly if one
wanted to reduce the expectation value of the running time.

A quantum computer (Deutsch 1985) is one in which quantum-mechanical
interference can be harnessed to perform computations. Such a computation also
need not necessarily evaluate functions when it is solving problems, because the state
of its output might be a coherent superposition of states corresponding to different
answers, each of which solves the problem. This allows quantum computers to solve
problems by methods which are not available to any classical device.

Let us assume that, however U; works, its operation is a coherent quantum-
mechanical process. Of course all physical processes conform to this assumption at
some sufficiently complete level of description, possibly including their environment.
But we mean that U, can conveniently be made part of the coherent computation of
a quantum computer.

Let o, be a Hilbert space of dimension mn and let

)i eZ,.jeZ,) (1)
be a fixed orthonormal basis in #,,,. Suppose that U, operates by accepting input
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in any state |k, 0) of the basis, representing the value k, and converting it to output
in the state |k, f(k)), from which the value f(k) can be read off with probability 1.
More generally, we may suppose that U, effects the unitary evolution

Uy
[6.47 = 16,j +@), (2)

where the addition in the expression j+f(i) is performed modulo n. Then, by the
linearity of quantum evolution, U, will evolve the input state

m73|0,0>+ ... +|m—1,0)) (3)

to the output state
mH(0, f(0)> + ...+ |m—1, f(m—1)). (4)

Thus, by running U, only once, we have in some sense computed all m values of f, in
superposition. Elementary quantum measurement theory shows that no quantum
measurement applied to the system in the state (4) can be used to obtain more than
one of the m values f(0), ..., f(m—1). However, it is possible to extract some joint
properties G[f(0),...,f(m—1)] of the m values, by measuring certain observables
which are not diagonal in the basis (1). This is called the method of computation by
quantum parallelism and is possible only with computers whose computations are
coherent quantum processes. For examples see Deutsch (1985) and Jozsa (1991).

To date, all known computational tasks which can be performed more efficiently
by quantum parallelism than by any classical method have the following two
properties. Firstly, the answer is not obtained with certainty in a given time; that
is, there is a certain probability that the program will report that it has failed,
destroying the information about f, so that in general it has to be run repeatedly
before the answer is obtained. Secondly, although on some occasions it runs faster
than any classical algorithm, the quantum algorithm is on average no more efficient
than a classical one. It can be shown (Deutsch 1985) that the second property must
hold for at least one choice of input in the quantum computation of any function.

It is the purpose of this communication to describe a problem for which quantum
parallelism gives a solution with certainty in a given time, and is absolutely more
efficient than any classical or stochastic method.

The problem is as follows: Given a natural number N and an oracle U; for a
function f: Z,5y - Z,, find a true statement in the list:

(A) fis not a constant function (at 0 or 1);

(B) the sequence f(0), ..., f(2N—1) of values of f does not contain exactly N zeros.

Note that for any f, at least one of (A) or (B) is always true. It may be that both
are true, in which case either (A) or (B) is an acceptable solution. That is why the
solution of this problem is not necessarily tantamount to the computation of a
function. A stochastic or quantum algorithm for solving it may have the property
that when (A) and (B) are both true, it returns either answer, randomly. But when
only one of them is true, the algorithm must return that one with certainty.

Consider first the classical solution. We repeatedly run U, to calculate values of f
in some order, say f(I1(0)), f(II(1)), f(II(2)), ..., where II is a permutation on Z,,. We
continue until we have enough information to prove that (A) or (B) is true. This is
always achieved in at most N+ 1 invocations of U;, though many functions f will
require fewer invocations. Representing a function f by the 2N-sequence f(11(0)), ...,
f(II(2N—1)) of zeros and ones, we have the results of table 1.
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Hence, given a large number of random fs, the average number of invocations of U
required to solve the problem for each f is

N+1 ¥ _ 1
W‘f‘ Zzn(%)n b 3““2‘1\7__15 5)
ne=

i.e. approximately three invocations for large N. If we are exceptionally unlucky, or
if the fs are not presented randomly, but perversely by someone who knows what
algorithm we are going to use, we shall require N+ 1 invocations. With a classical
stochastic computer we can choose the permutation II randomly, a process which
requires O(In(NV)) steps on average, and can thereby expect to solve the problem in
approximately three invocations. though again in unlucky cases this may rise to
N+1 invocations, plus an overhead of OV In(V)) steps.

Now we present a method of solution using quantum parallelism. Let S be the
unitary operation defined by

Sli, j = (=1)1i. 5> (6)

This operation can be performed by a quantum computer (cf. Deutsch 1985) in a
fixed number of steps, independent of N and f. The state

1 2N—-1 .
|p> = m EO 7,0 (7)

can be prepared, starting with the ‘blank’ input 0,0, in O(In(V)) steps,
independently of f. For example, if 2N is a power of two, this could be done by
applying the elementary one-bit transformation

[2) > (2> + (= 1)"[1—=a)) (veZ,) )

successively to each of the log,(2N) bits that hold the value ¢ in (7).

Given a quantum oracle Uy, apply the three operations Uy, S, U, successively to the
memory locations prepared in the state |¢). Then from (1), (6) and (7) the evolution
is

> Ug 1 2N-1 >
Py &

S 1 2N-1

S & )
Uy 1 2N-1 O
>y I (SO0 =, ©)
The magnitude of the inner product
1 2N-1 )
K101 = 55| Z (—1)y® (10)

is zero when statement (B) is false, and unity when statement (A) is false. Therefore
if, after performing the operations in (9), we measure the projection observable
|p> {¢|, and the outcome is 0, we can be sure that |i/) was not parallel to |¢), and
hence that (A) is true. And if the outcome is 1, we can be sure that [i/) was not
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Table 1
number, n, of number of probability of
invocations of decided solving problem in
U, form of sequence decided sequences, k n invocations, 272"k
1 no sequences decided 0 0
2 01. 2%N-2
10 . } (A) true +22N—2 %
3 001 .. 28N-3
110. } (A) true 4 92N-3 i
N 00..01 2eN-N 1
L1 o ) e 49w a1
N+1 00 ...00 (B)true 2n-t
00 ..01 (A)true +2N-1 1
11...10 (A) true + 201 9N-1
11..11 (B)true +2N-1
total: 22V total: 1

orthogonal to |¢), and hence that (B) is true. The outcome must be either O or 1,
because those are the only eigenvalues of any projection observable. Therefore the
procedure cannot fail to establish the truth of either (A) or (B).

The measurement of |¢) {P| can be performed in O(In N) steps, by first performing
the inverse of the transformation which prepared |¢) from a blank input |0,0), and
then measuring the observable |0,0) <0,0|, which is simply a matter of measuring
each bit independently. The oracle U, is invoked exactly twice in (9), and no other
invocations are required. This is a clear improvement over the average of 3 —27V+1
invocations required by the best classical or stochastic method, and a vast
improvement over the worse case (N+1 invocations) for either of those methods.
Note that the problem is solved on each occasion with certainty.

It is interesting to compare the computational complexity of this problem relative
with classical and quantum computers. In the classical case, polynomial equivalence
class complexity theory (Garey & Johnson 1979) is based on deterministic (pT™) and
non-deterministic (NpDTM) Turing machine models. We first note the result (referred
to as (*)) that for any classical solution of our problem, using a DTM, there exists a
function f: Z,, — Z, which requires at least N+ 1 invocations of the oracle. To see
this, suppose that a pT™M can solve the problem for every such f using only M <N
invocations. Let f, be a constant function so that statement (A) is false and the
machine must conclude that statement (B) is true. Then for any M invocations, for
inputs chosen in any way whatsoever, there exists a function g which agrees with f,
at all M choices, and has exactly N zero values. Since, by assumption, the M values
constitute the only information that the ptm has about the function, it cannot
distinguish U, from U, i.e. it cannot conclude that statement (B) is true. The same
argument apphes to NDTMS showing that the decision problem of whether B is true
or not, is not in the class NP (though the corresponding problem for A is in NP but
not in P).

To assess the complexity of the problem consider first an idealized situation in
which the oracle is deemed to deliver its result in one computational step, and not
to contribute to the size of the problem’s input data. Then the problem is specified
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by giving N, which has size O(InN). Hence by (*), exponential time is required for its
solution. The quantum solution, requiring only two invocations, and a time of
O(InN)) to set up the input state, solves the problem in polynomial time. Thus
the problem is in QP, the quantum analogue of the class P.

If we wish, more realistically, to model the oracle’s size and running time, then we
could assume the oracle size, for general f, to be O(IV), this being the size of the oracle
which simply contains a rRoM list of the function values. Also for any f there exists
an oracle which operates in a time of O(InN): e.g. to look up f(k) it could traverse a
binary tree following the binary expansion of k. From these estimates, and (*), it
follows that any classical computer requires at least polynomial time, whereas the
quantum computer requires only logarithmic time, again providing an exponential
saving.

If we restrict the input fs to a class of functions whose oracles have size less than
p(InN), where p is a fixed polynomial unknown to the solver of the problem, then the
restricted problem requires exponential time in the classical case and only polynomial
time in the quantum case. That is because for any given N this condition does not,
from the solver’s point of view, exclude any function f: Z,,, — Z,, so by the same
argument that we used for the general problem, there cannot be a less-than-
exponential classical solution even for the restricted problem.
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