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By confining electrons in three dimensions inside semiconductors, quantum dots can
recreate many of the phenomena observed in atoms and nuclei, making it possible to
explore new physics in regimes that cannot otherwise be accessed in the laboratory

Quantum dots are man-made "droplets"
of charge that can contain anything from
a single electron to a collection of several
thousand.  Their typical dimensions
range from nanometres to a few microns,
and their size, shape and interactions can
be precisely controlled through the use of
advanced nanofabrication technology.
  The physics of quantum dots shows
many parallels with the behaviour of
naturally occurring quantum systems in
atomic and nuclear physics. Indeed,
quantum dots exemplify an important
trend in condensed-matter physics in
which researchers study man-made
objects rather than real atoms or nuclei.
As in an atom, the energy levels in a
quantum dot become quantized due  to
the confinement of electrons. With quan-
tum dots, however, an experimentalist
can scan through the entire periodic table
by simply changing a voltage.
  Many of these phenomena can be
studied by allowing single electrons to
tunnel into and out of the dot, since this
reveals the quantized energy levels of the
device.  Experiments  at  our  labs  at  the
Delft University of Technology in the Netherlands and
Stanford University in Calfornia have used this technique
to probe various properties of quantum dots. What is
most exciting is that many of the quantum phenomena
observed in real atoms and nuclei - from shell structure in
atoms to quantum chaos in nuclei - can be observed in
quantum dots. And rather than having to study different
elements or isotopes, these effects can be investigated in
a quantum dot by simply changing its size or shape.

Symmetric quantum dots as artificial atoms
Many properties of quantum dots have been studied
through electron tunnelling, a quantum effect that allows
electrons to pass through a classically forbidden potential
barrier. But electron tunnelling to and from a quantum dot
is dominated by an essentially classical effect that arises
from the discrete unit of charge on an electron. If the
tunnelling to the dot is weak - which happens, for example,
when relatively high potential barriers separate the dot
from a source and drain of

electrons - the number of electrons on
the dot, N, is a well defined integer.

Any movement of electrons through
the dot requires this number to change
by one. But the Coulomb repulsion
between electrons means that the
energy of a dot containing N+1
electrons is greater than one containing
N electrons. Extra energy is therefore
needed to add an electron to the dot,
and no current will flow until this
energy is provided by increasing the
voltage. This is known as the Coulomb
blockade.

To see how this works in practice,
Seigo Tarucha and colleagues at NTT
in Japan and one of us (LK) and co-
workers at Delft have studied what
happens in a symmetric quantum-dot
structure (figure 1). The structure
contains a quantum dot a few hundred
nanometres in diameter that is 10 nm
thick and that can hold up to 100
electrons. The dot is sandwiched
between two non-conducting barrier
layers, which separate it from
conducting material above and below.
By applying a negative voltage to a
metal gate around the dot, its diameter
can gradually be

squeezed, reducing the number of electrons on the dot -
one by one - until there are none left.

This makes it possible to record the current flow as the
number of electrons on the dot, and hence its energy, is
varied. The Coulomb blockade leads to a series of sharp
peaks in the measured current (figure 2a). At any given
peak, the number of electrons on the dot alternates
between N and N+1. Between the peaks, the current is
zero and N remains constant. The distance between
consecutive peaks is proportional to the so-called
addition energy, Eadd, which is the difference in energy
between dots with N+1 and N electrons.

The simplest model to describe a quantum dot, the so-
called constant-interaction model, assumes that the Cou-
lomb interaction between the electrons is independent of
N and is described by the capacitance, C, of the dot. In
this model, the addition energy is given by Eadd = e2l C +
∆E, where e is the charge on the electron, and ∆E is the
energy difference between one quantum state and the
next. Adding a single electron to the dot therefore
requires a constant
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charging energy, e2/ C, plus the difference in energy between
the quantum states.

Despite its simplicity, this model is remarkably accurate
and allows us to describe the measurements in more detail.
The first peak on the graph marks the energy at which the
first electron enters the dot, the second records the entry of
the second electron and so on. But the spacings between the
peaks are not constant, and significantly more energy is
needed to add the second, sixth and twelfth electrons.

We can picture this in terms of two-dimensional electron
orbits, since the shape of the quantum dot restricts electron
motion to this plane (figure 2b). The orbit with the smallest
radius corresponds to the lowest energy state. This state has
an angular momentum of zero and - as with atoms - can only
contain two electrons with opposite spin.

This means that the charging energy, e2/C, is enough to
increase the number of electrons on the dot from one to two.
But extra energy, ∆E, is needed to add a third electron, since
the innermost orbit will be full and the electron must go into
a higher energy state. Electrons in this orbit have an angular
momentum of ± 1 and two spin states, which means that this
shell can contain four electrons. This shell will be full once
the dot contains six electrons, and so extra energy is needed
to add the seventh electron.

The third shell presents a special case if the confining
potential is parabolic in the radial direction, because this
introduces a radial quantum number. States in this shell
can have an angular momentum of 0 and a radial quantum
number of 1, or an angular momentum of ±2 and a radial
quantum number of 0. Together with the spin states, this
means that the third shell can contain six electrons and
will be full when N= 12.

This sequence, N= 2, 6, 12, 20 and so on, provides the
"magic numbers" of electrons in a circularly symmetric
harmonic potential confined to two dimensions. The
energy states for such a system were calculated in the
1920s by Charles G Darwin and independently by
Vladimir Fock.

The addition energy (inset to figure 2a) also shows
smaller peaks at N= 4, 9 and 16. This substructure reflects
how the interactions between electrons can influence the
filling of energy states. In atomic physics these effects are
formulated as Hund's rules, which state that electrons
enter a shell with parallel spins until the shell is half full,
and then enter with opposite spin. The sequence N= 4, 9
and 16 corresponds to a half filling of the second, third
and fourth shells, where the total spin of the electrons
reaches a maximum value.

This picture is summarized in a new "periodic table" of
two-dimensional elements (figure 2c). The rows are
shorter than those of the familiar periodic table because
the dot is defined in two dimensions rather than three.

But these dots are more useful than simply providing
analogues of real atoms, since their larger and more
controllable size allows experiments to be carried out in
regimes that cannot readily be accessed for real atoms.
For example, the electron orbits in both atoms and
quantum dots are altered by a magnetic field, but the
effect of a I T magnetic field on a quantum dot is
comparable with the effect of a one million tesla field on a
real atom. Such high magnetic fields cannot be produced
in the lab.
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for example, experimental and numerical re-
sults indicate that interesting transitions
occur between the energy states on the dot.
These are related to changes in the exchange
energy, which accounts for the interactions
between electrons with parallel spins.

Loss of symmetry
It is worth reiterating that the shell structures
observed for both the symmetric quantum
dots described above and real atoms result
from symmetry. For the dots, it is the circular
symmetry of the pillar that leads to the
periodic table in figure 2, while for real atoms
the spherical symmetry of the nuclear
potential leads to the familiar periodic table
of elements. While our familiarity with atoms
and shell structure make symmetric quantum
systems seem ubiquitous, in fact just the
opposite is true. By far the more common
situation is that systems lack spatial
symmetry. This is particularly the case for
man-made quantum systems. An interesting
set of physical laws has recently been
uncovered for quantum systems that lack
symmetry. These asymmetric quantum
systems are characterized by universal
statistics, which were first recognized in
nuclear physics and studied theoretically by
Eugene Wigner, Freeman Dyson and others
in the 1950s and 60s. Such universalities are
now a familiar topic in mesoscopic physics.

The basic idea is that all disordered or
irregularly shaped quantum systems fall into
a few broad classes that are distinguished by
any symmetries that remain in the system,
such as symmetry under time-reversal. The
quantum systems within each class share
various statistical properties that describe, for
example, their energy-level structure or
scattering behaviour.

A surprising aspect of the universal statistics relating to
quantum systems is that they seem to be connected with
chaotic dynamics observed in the equivalent classical
system. For example, the famous "stadium billiard" (a
two-dimensional region bounded by hard walls) is a
simple shape, consisting of semicircles connected by
straight edges. Nonetheless, the classical trajectory of a
ball bouncing in a stadium produces random motion for
almost any initial condition, as proved by Leonid
Bunimovich (figure 4a). The corresponding quantum
system (figure 4b) has wavefunctions and energy levels
that share universal features with other classically chaotic
systems. This example has since become a mainstay of
research into the quantum aspects of classical chaos, a
subject now known as "quantum chaos".

It is presumably the same universal behaviour of
quantum chaos that leads to the random, but reproducible,
fluctuations that are observed in the conductance of
micron-scale metals at low temperatures. Such
"mesoscopic" systems are small enough to exhibit
quantum interference, but large enough to contain a
random distribution of scatterers such as impurities and
dislocations. These scatterers act as a source of chaos,
causing electrons to move along random paths that
depend on the initial conditions, just like a ball bouncing
in a pinball machine.
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Indeed, studies of the electronic orbits of quantum dots
in a magnetic field have provided further support for the
Darwin- Fock energy spectrum. And at high magnetic
fields it is even possible to study the quantum Hall effect
in quantum dots. For example, Ray Ashoori of the
Massachusetts Institute of Technology in the US has
measured how the electron states evolve as the magnetic
field is increased from zero into the quantum HO regime.
And in 1991 Paul McEuen - then working with Marc
Kastner at MIT and now at the University of California at
Berkeley - showed that the simple model of constant
Coulomb interactions no longer applies at high magnetic
fields. In this regime, the interactions and confinement
should be treated on an equal footing, and a more
sophisticated calculation is needed to get the physics
right.

We have so far focused on electron transport in the
linear regime, where the voltage across the dot is small
compared with the charging energy and the separation
between quantum states. But this only allows us to study
the ground-state energies of the artificial atoms. By
increasing the voltage further, a "transport window" can
be opened across the quantum dot, allowing excited states
to contribute to electron transport (figure 3a).

This makes it possible to measure the energy spectrum
of excited states (figure 3b). Such excitation spectra,
together with the effect of a magnetic field, can be
calculated numerically for up to six electrons. At
magnetic fields of around 1 T,
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altering the gate voltages. Dots of this type can contain
any- thing from a few to several thousand electrons.

In 1996 the statistical properties of tunnelling transport in
this type of quantum dot were measured by one of us
(CNI) and colleagues at Stanford, and independently by
Albert Chang and co-workers at Bell Labs, New Jersey,
US. As in the earlier experiments, the movement of
electrons is dominated by the Coulomb blockade. The
conductance therefore shows a series of peaks as the gate
voltage is increased (figure 6a). Two aspects of the
measured peaks are expected to follow universal statistics:
the distribution in peak heights and the distribution of
spacings between the peaks.

Let us first consider the distribution of peak heights. At
low temperatures (- 100 millikelvin), the heights of the
Coulomb peaks are inversely proportional to temperature
and proportional, on average, to the series conductance of
the two leads. However, changes in the shape of the dot -
or in the number of electrons it contains - lead to random
fluctuations in the coupling between the dot and the leads,
and these should result in a universal distribution of peak
heights. Rodolfo Jalabert, Doug Stone and Yoram Alhassid
at Yale University in the US calculated this distribution in
1992, using ideas that lead to the well known Porter-
Thomas distribution of scattering widths observed in
compound nuclear scattering.

Measurements of the distribution in peak heights can be
made by altering the shape of the quantum dot to collect
data on large numbers of different - but similar - quantum
systems. Distributions measured in this way agree well with
theory (figures 6b). As long as the dot generates chaotic
dynamics, the distribution is independent of the size, shape
and transmission of the single-channel leads. It only
changes in the presence of a magnetic field, since this
breaks the symmetry under time-reversal, and here again
the theory matches the experimental results (figure 6c).

What about the spacing of the Coulomb peaks? A simple
universal prediction can be made for any chaotic quantum
dot by simply applying the approach taken earlier for sym-
metric dots. In this case the charging energy needed to add
electrons to the dot is simply added to the universal
distribution for spacings between quantum levels, which is
well known from other quantum systems. Indeed, these so-
called Wigner-Dyson distributions are the most famous
example of the universality of quantum chaos, and seem to
describe everything from the spacing between resonances
in com- pound nuclear scattering to single-particle energy
level spacings of classically chaotic dynamical systems.

According to the charging-energy model, the distribution
of peak spacings should follow a Wigner-Dyson
distribution with a width that depends on the properties of
a particular dot. This theoretical distribution shows two
main features: a single spike due to even-numbered
electrons that only require a charging energy to enter the
dot, and a broader peak due to odd-numbered electrons that
require extra energy to enter the next quantum level (figure
6d).

However, this simple scheme requires a series of
question- able assumptions. It supposes that the charging
effects can be described by a single, slowly varying
charging energy. It also assumes that the electron spins
dictate how the energy levels are filled, and that
fluctuations in the capacitance of the dot are small. This
last assumption has been called into question by Uri Sivan
and colleagues at the Technion in Israel, who have
investigated the peak spacings in quantum dots and wires.
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In the case of quantum dots, however, chaos is not
generated by scatterers, since the mean free path for
elastic scattering is several times larger than the dot.
Although the interactions between electrons - just like
those between nucleons in the nucleus - can lead to
quantum chaos and universal statistics, experiments to
study these effects do not only rely on these interactions
to generate chaos. Instead, the dots are designed so that
their shape lacks all spatial symmetry.

In practice, these dots can readily be fabricated by
laterally confining a two-dimensional sheet of electrons
created at the interface between layers of gallium arsenide
and aluminium gallium arsenide (figure 5). Several metal
gates are used to confine the electrons in an irregular
shape, and individual electrons can enter or leave the dot
through two tunnelling barriers or "leads". Both the shape
of the dot and the movement of electrons through the
leads can be controlled by



Based on experimental data and numerical work with
Richard Berkovits at Bar-Ilan University in Israel, Sivan
and colleagues find that changes in capacitance can
significantly contribute to, and in some cases dominate,
the peak-spacing statistics.

Indeed, the measured distribution of the peak spacings -
obtained by the Stanford group for about ten thousand
peaks - disagrees with the simple theoretical model
(figure 6d). In particular, the distribution shows no hint of
the even-odd features seen in the predicted distribution,
challenging the assumption that each level fills first with
one spin then the other before the next level is occupied.
Further work is needed to understand how the spin,
Coulomb interactions and chaotic wavefunctions combine
to produce this measured distribution.

Several theorists, in particular Michael Stopa, while at
Riken in Japan, Berkovits, and Ned Wingreen and Kenji
Hiroshi at the NEC Research Center in Princeton, US,
have recently approached the problem numerically,
allowing the possibility of more complicated
arrangements of occupations, and that the total spin may
minimize the energy of the dot. But it remains to be seen
whether there are some universal statistics for these
interacting systems. Recent experiments by Dan Ralph
and Michael Tinkham at Harvard University in the US
also emphasize the importance of spin and inter- action in
the properties of quantum dots. In their case, the dots are
made of aluminium, which leads to superconductivity
effects at low temperatures and magnetic fields.

Future horizons

Much of the physics observed in quantum dots has also
been revealed in other quantum systems. For example, the
move- ment of single electrons has recently been
measured in carbon nanotubes and other molecular
systems, and shows similar features to those observed for
quantum dots. These similarities suggest that the physics
of quantum dots applies to many other systems containing
confined electrons.

Meanwhile, the continual development of
nanotechnology will allow a greater range of artificial
quantum structures to be studied. More refined theories of
quantum transport will be needed to consider not only the
quantization of energy and charge, but also the
interactions between confined and non-confined
electrons.

Some work has already started in this direction. For ex-
ample, a collaboration between MIT and the Weizmann
Institute in Israel and also the group in Delft with one of
us (LK) has recently used quantum dots as artificial
magnetic

impurities embedded between metallic leads. If the dot
contains an odd number of electrons, the total spin will be
non- zero and electron tunnelling between the dot and the
leads changes the spin on the dot. The coupling between
the dot and leads therefore has the effect of a spin-
exchange coup- ling. Experiments in this regime have
shown new transport features that resemble the Kondo
effect in metals containing magnetic impurities.

While the Kondo effect owes its existence to
interactions between many electrons, interactions can
actually destroy other quantum transport phenomena. For
instance, in the case of more complex circuits, the
question arises whether electrons can retain their quantum
mechanical properties, or whether interactions with the
outside environment will lead to phase decoherence. In
the last few years Moty Heiblum's group at the Weizmann
Institute has carried out an interesting series of
experiments aimed at measuring these coherence
properties, and has observed, for instance, how placing a
micro-detector near one arm of the interferometer causes
decoherence. More work along these lines needs to be
done before we can know if it is possible to use quantum
dots as the building blocks for quantum circuits.

This is a question with practical importance, since it has
been suggested that such quantum circuits could form the
basis of a quantum computer. However, it will take many
more fundamentally interesting experiments before we
get to such practical applications.
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