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Abstract

Normally, if an atom couples to its electromagnetic environment noise due to vacuum �uctu-
ations will cause the atom to spontaneously decay, emitting a photon which will not interact
with the atom again. The strength of interaction between photons and atoms can be increased
such that it dominates over dissipative processes by con�ning the electromagnetic �eld with a
cavity. This is called the strong coupling regime of cavity quantum electrodynamics (QED) [1].
In recent works the strong coupling regime for arti�cial atoms in quantum dot systems [2] and
circuit QED [3] has been reached. This regime can be observed in form of the splitting of
the cavity transmission peak into two separated peaks if a resonant atom is placed inside the
cavity - an e�ect called vacuum Rabi splitting.

In this work the vacuum Rabi splitting was measured in circuit QED with increased drive
power, which led to two additional features in vacuum the heterodyne tranmission spectrum.
A supersplitting of the Rabi peaks into a doublet can be observed and additional peaks with
the characteristic

√
n spacing of the Jaynes-Cunnings ladder appear. The change of shape can

be reproduced by describing the qubit and cavity system as an e�ective two-level system. Addi-
tional levels of the qubit and cavity system were included for the detailed theoretical modeling
of the measurements. For a consideration of the sample temperature a thermal contact of the
cavity and qubit system to a heat bath was assumed, which led to a good agreement between
simulation and measurement at elevated temperature up to 140 mK. With another experimen-
tal approach where only the electromagnetic signal passing through the cavity is at an increased
temperature, a thermometer for the e�ective cavity and qubit system was successfully realized.

The additional peaks in the vacuum Rabi splitting with increased drive power show a coupling
between the quantized microwave �eld and the anharmonic spectrum of a superconducting
qubit acting as an arti�cial atom. Especially the agreement between simulation and mea-
surement in every peak con�rms the validity of the Jaynes-Cummings Hamiltonian for the
description of the system and the robustness of circuit QED. By using the vacuum Rabi mode
splitting spectrum as a thermometer of the cavity and qubit system, one can test if thermal
noise is low enough to prevent thermal population of the cavity. This is necessary to perform
experiments in the quantum mechanical ground state.

Cavity QED in superconducting circuits is an excellent tool for investigations in fundamental
interaction of light with matter and in quantum information such as multi-level quantum logic.
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Chapter 1

Introduction

The possibility of storing and processing information has in�uenced society in the last cen-
tury like never before. With the invention of computers our daily lives have changed. These
machines have become ubiquitous �xtures in o�ces, laboratories and at home, and mod-
ern communication possibilities like the internet and cell phones have become indispensable.
Furthermore, with new developments of information processing in computers many physical
phenomena, like plate tectonic movement and airplane �ow resistance, can be modeled and
understood.

A classical computer stores information with bits. Bits are realized in a physical system
that can either be in the state 0 or 1. With the advent of quantum mechanics a new question
arose. What is information in a quantum system that is described by probabilities? In analogy
to a classical computer, the smallest piece of information is a quantum bit or qubit. It can
be realized from any two quantum states and di�ers from classical bits in that it can be in
the states 0 and 1 simulatneously. This concept of superposition of two states in a quantum
system opens many new ways for information technology.
The idea of quantum information processing and quantum computing led to some interesting
theoretic results and forecasts. In 1994 Shor developed a quantum algorithm that could factor
and take discrete logarithms of large numbers exponentially faster than any known classical
algorithm [4]. This has a big impact on cryptography since the RSA public-key systems relies
on the fact that numbers are much easier to multiply than to factor [5]. Therefore a quantum
computer could successfully attack a RSA system. This led to a big interest in theory and con-
struction of quantum computers. Later, in 1997 Grover was able to show that with a quantum
search algorithm the time to search unstructured data can speed up quadratically [6].
Another important application of quantum computers is simulating quantum physics. With a
classical computer, even a small quantum system consisting of 300 electron spins is not possible
to simulate [7]. The idea arose that with a quantum computer it should be much easier to
simulate quantum physics [8]. This would be a revolution in di�erent areas like atomic physics,
nano physics and biochemistry and therefore lead to a better understanding of nature.

Since a qubit can be represented by any two distinct quantum states, there are many di�erent
possibilities to realize a quantum computer. Ion traps, nuclear and electron spins, photons,
and superconducting circuits are some promising realizations of qubits. In order to study
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2 CHAPTER 1. INTRODUCTION

quantum information, a quantum system must be controllable, which means readout by the
experimenter and a deterministic coupling between the qubits must be possible. In addition
the system must be coherent, and therefore avoid decay and dephasing. These criteria were
introduced by DiVincenzo [9]. Coherence can be seen as the presence of interference and is a
characteristic di�erence between a quantum and a classical system. On the other hand, it is
also a limiting factor of a quantum computer. Decoherence arises due to noise, meaning the
system must be well isolated from noise in the environment while a measurement must be still
possible. These requirements seem to be opposed and are therefore very challenging for an
experimental realization.

Usually if an atom is coupled to its electromagnetic environment, noise will cause dephas-
ing and lead to decoherence. In cavity quantum electrodynamics (QED), an atom is con�ned
inside a cavity. If the atom decays the emitted photon is re�ected many times inside the
cavity before it leaks out. This allows the study of the interaction of a single photon with the
atom. Con�ning the photon to a small volume has some other advantages: an increase of the
energy density, more chances for the photon to interact with the atom, and a suppression of
the spontaneous decay in the dispersive case which leads to longer coherence times.
In circuit QED photons at microwave frequency interact with a qubit that is realized by using
Josephson junctions [3]. The circuit is implemented as a macroscopic system on a chip and
behaves quantum mechanically like an arti�cial atom. Compared to atomic realizations of a
qubit, this system is very well coupled to other circuits, the parameters can be tuned and
therefore it has the advantage of a better data aquisation and manipulation.

In this work we investigate a transmon qubit that is tuned into resonance with the cavity.
Since the transmon qubit has a large e�ective dipole moment [10], a direct measurement of
the qubit photon coupling can be done by the vacuum Rabi splitting. This is a fundamental
quantum phenomenon because the system can be prepared in a state that is entangled. Entan-
glement means a symmetric and antisymmetric superposition of states where the individual
properties of each state are lost and can be used for teleporting quantum states [11]. The
�rst vacuum Rabi splitting of an intracavity atom was observed by Zhu et. al. [12]. Recent
works described vacuum Rabi splitting for arti�cial atoms in quantum dot systems [2] and
circuit QED [3]. Measuring vacuum Rabi splitting in heterodyne transmission with increased
drive power leads to two additional features, a supersplitting of the Rabi peaks into a doublet
and additional peaks in the resonator transmission spectrum because of transitions to higher
energy levels as further investigated in this work.



Chapter 2

Theory

2.1 Cavity Quantum Electrodynamics

Generally, cavity quantum electrodynamics (QED) studies the interaction of atoms with dis-
crete photon modes in a cavity. A model system for light matter coupling is the interaction
of a two level system with a cavity via dipole coupling. This can be modeled with the Jaynes-
Cummings Hamiltonian

HJC = ~ωr(a†a+
1
2

) +
1
2

~ωaσz + g~(a†σ− + aσ+) +Hκ +Hγ , (2.1)

where the �st term is the energy of the electromagnetic �eld, 〈a†a〉 counts the number of
photons and every photon contributes the energy ~ωr. Even if no photon is inside the cavity,
the vacuum �eld leads to an electromagnetic energy contribution. The second term represents
the two-level system where σz is a pauli matrix and the level separation is given by ~ωa.
Dipole coupling between cavity and two-level system leads to the third term. With a†σ−,
aσ+ a photon is emitted respectively absorbed from the atom and g is the coupling constant.
Finally the losses of the system should be taken into account. Hγ describes the coupling of
the atom to other modes than the cavity mode with a decay rate γ of the excited state. Hκ

is given due to the fact that the cavity couples to the continuum and therefore photons leak
out. The leakage rate is given by κ = ωr/Q, where Q is the quality factor of the cavity. An
Illustration of di�erent terms that contribute to the Jaynes-Cummings Hamiltonian is given
in Fig. 2.1.

If g > κ, γ the strong coupling regime is reached where the coherent interaction between
cavity and two-level system dominates over the dissipative part. A charactristic signature for
the strong coupling regime can be given in the resonant case that enables a free exchange of
energy between cavity and qubit. Because of new eigenstates with photon and qubit character
(Fig. 2.2) an excitation of the system oscillates between an atomic excitation and a photon in
the cavity. This is called a vacuum Rabi oscillation. If many oscillations can be performed
before the photon leaks out of the cavity or the atom decays, the strong coupling limit is
reached.

3



4 CHAPTER 2. THEORY

Figure 2.1: Illustration of the di�erent contributions to the Jaynes-Cummings Hamiltonian. A
two-level system with decay rate γ⊥ traverses the cavity during the time Ttransit. The two-level
system interacts with a single mode of the electromagnetic �eld with coupling strength g. Loss
of photons arises at rate κ. Figure taken from [13].

Figure 2.2: Energy level diagram of the Jaynes Cummings Hamiltonian. On the left is the qubit
in the ground state |g〉, on the right in the excited state |e〉, |n〉 stands for the photon number.
Dashed lines represent an uncoupled system and solid lines represent the dipole coupled states.
In the resonant case where ωa − ωr = 0, the coupling leads to new eigentstates. A separation
of the energy with 2g

√
n can be observed. Figure taken from [14].
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2.2 Cooper Pair Box

There are three di�erent types of qubits based on superconducting circuits, which can be clas-
si�ed according to the three variables charge, �ux and phase that are used to control and
excite [16]. The qubit type considered here is the Cooper pair box, a charge qubit [17, 18].

The Cooper pair box (CPB) consists of a Josephson junction and a gate capacitance Cg.
A Josephson junction is given by two superconducting layers separated by a thin isolator.
Even if no external electromagnetic �eld is applied there can be a super-current across the
junction. This is called the Josephson e�ect. The Josephson junction is described as a circuit
element with a Josephson energy EJ and a capacitance Cj . This circuit element allows a
coherent tunneling of the Cooper pairs between the two superconducting layers, has an anhar-
monic spectrum wich is needed to distinguish the di�erent energy levels and low dissipation
(Fig. 2.3b).
The part between gate capacitor and isolating layer of the junction is often called the island
and the remaining part of the electrode is referred to as the reservoir (Fig. 2.3a). Cooper pairs
can be exchanged between island and reservoir. The excess charges on the island are expressed
by n = 2N , N being the number of Cooper pairs. With an applied voltage Vg the Cooper
pairs can be electrostatically induced to tunnel and therefore the reduced gate charge ng can
be changed according to

ng = CgVg/e, (2.2)

with Cg and Vg being the gate capacitance and the gate voltage respectively.

Figure 2.3: (a) A schematical picture of a Cooper pair box. In green we have the island,
in orange the isolator and in blue the reservoir. (b) A circuit diagram of the CPB. The
island (green) is connected to the reservoir via a Josephson junction which is symbolized by a
Josephson element with Josephson energy EJ and a capacitance Cj . With an applied voltage
Vg the reduced gate charge ng can be controlled. The charging energy Ec is given by the total
capacitance of the island to ground. Figure taken from [14].

2.2.1 Charge Basis

If N̂ is an operator giving the number of Cooper pairs in excess from neutrality in the island,
the eigenstates of N̂ can be used as a basis for the Hamiltonian. Eigenstates, |n〉, can be
calculated with
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N̂ |n〉 = N |n〉 N ∈ Z. (2.3)

The Hamiltonian for a CPB can be divided into two parts, an electrostatic component and a
Josephson component from the Cooper pairs tunneling through the junction.

H = Hel +HJ

=
∑
n∈Z

4Ec(N −
ng
2

)2 |n〉 〈n| − EJ
2

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) (2.4)

EC = e2

2CΣ
represents the electrostatic energy that is needed to transfer an electron to the

island, with CΣ = Cj + Cg being the total capacity of the Cooper pair box. EJ = φ0Ic
2π is the

Josephson energy, with Ic the critical current over the Josephson junction and φ0 = h/2e the
�ux quantum [19].
The �rst part of the Hamiltonian leads to parabolas in the energy versus ng diagram (Fig. 2.4).
The parabolas are horizontally shifted with di�erent numbers of Cooper pairs in excess on the
island. At a crossing point of two parabolas an energy degeneration of the two charge states
occurs. This point is also called a charge degeneracy point. If the exchange of Cooper pairs
between island and reservoir is taken into account (coherent tunneling), the charge degeneracy
is lifted. An avoided crossing is visible and the eigenstates are a symmetric and an antisym-
metric superposition of n and n+1 Cooper pairs on the island, respectively. This leads to two
di�erent energy bands, for which the minimal distance is given by EJ . Since the Josephson
junction is an anharmonic element the CPB can be used as an e�ective two level system, a
qubit [20].

The charge degeneracy point is an interesting point in terms of charge noise. At this 'sweet
spot' [20] the energy of the system is less sensitive to �uctuations of ng than at other points.
This is due to the fact, that the �rst order contributions are zero at a minimum and therefore
the electron dephasing is reduced.

Figure 2.4: Energy levels of a CPB versus gate charge ng. The dotted and dashed lines
represent electrostatic energies for 0,1 and 2 Cooper pairs on the island. Solid lines take in
addition the Cooper pair tunneling through the junction into account and are from bottom
to top the ground and the �rst two excited state energy levels with EJ = EC . Figure taken
from [14].
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2.2.2 Phase Basis

Although the charge basis is very useful to illustrate the states of the CPB, it has a disadvan-
tage. Since the charge basis is unbounded discrete, it is not possible to solve the Hamiltonian
in Eq. (2.4) analytically. Phase is the canonical conjugate to charge and in contrast to charge,
the superconducting phase di�erence is continuous and periodic. Therefore the energy levels
can be calculated analytically in phase basis.

i = [θ, n] (2.5)

With the relation between canonical conjugates, Eq. (2.5), and the periodicity of the phase,
the Hamiltonian in Eq. (2.4) can be rewritten in the phase basis.

HCPB = 4EC(i
∂

∂θ
− ng/2)2 |θ〉 〈θ| − EJ

2
(eiθ + e−iθ) |θ〉 〈θ| (2.6)

The time independent Schroedinger equation is HCPB |k〉 = Ek |k〉. The phase wavefunction
ψk = 〈θ|k〉 and the Schroedinger equation de�ne a di�erential equation which belongs to the
class of Mathieu equations that can be solved analytically [22].

2.2.3 Split Cooper Pair Box

In order to have a second variable to control the energy spectrum of the CPB externally, the
idea of a split Cooper pair box was developed [20]. The main di�erence to the Cooper pair
box is the splitting of the junction into two pieces (Fig. 2.5). With this design it is possible
to change the Josephson energy EJ with an external �ux φ through the loop generated by the
split junction. The Josephson energy is given by

EJ = (EJ1 + EJ2)cos(π
φ

φ0
), (2.7)

where EJ1, EJ2 are the Josephson energies of the two junctions. Equation (2.7) is only valid if
both Josepohson junctions have the same Josephson energy. Especially for experiments with
a transmon qubit, this split design is important because a control of the energy with Vg is not
possible. This is further explained in the following section.

Figure 2.5: Scheme of a split Cooper pair box. The island is connected to the reservoir with
two Josephson junctions, each with a Josephson energy EJ1, EJ2. With an external �ux φ the
Josephson energy EJ can be changed. Figure taken from [14].
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2.3 Transmon Qubit

The transmon qubit is a further development of the Cooper pair box and arose from the
desire that the qubit is less a�ected by charge noise. It has a large ratio of Josephson energy to
chargeing energy. The main di�erence to the Cooper pair box is an additional large capacitance
between island and reservoir of the two Josephson junctions. This design di�erence leads to
a �atter charge dispersion, a smaller anharmonicity and a stronger coupling to the cavity as
further explained in the following sections [10].

2.3.1 Charge Dispersion

A disadvantage of the Cooper pair box is its strong sensitivity to 1/f charge noise. In �rst order
the sensitivity of charge noise can be reduced by operating the qubit at the sweet spot [20].
This point is indicated in Fig. 2.6a with dashed lines. Charge dispersion, Em(ng) for the mth
energy level, has no slope at the sweet spot and therefore linear contributions have no in�uence
on the qubit. This leads to a drastic improvement of T2 times [20]. Unfortunately, a changing
gate voltage bias is needed to correct the �uctuation of the system that drives it out of the
sweet spot regime.
An alternative way to decrease the in�uence of charge noise is an increase of the ratio EJ/EC .
In Fig. 2.6, a reduction of charge dispersion for increasing EJ/EC is visible. This leads to the
fact that the system gets less in�uenced by charge noise. Even a complete insensitivity of the
eigenenergies to ng is possible. The total charge dispersion εm is measured with the peak to
peak value for the charge dispersion of the mth energy level

εm ≡ Em(ng = 1/2)− Em(ng = 0), (2.8)

with Em being the mth energy level. A more accurate study [10] leads to the following expres-
sion for the charge dispersion of the mth energy level:

εm ∼= (−1)mEc
24m+5

m!

√
2
π

(
EJ

2EC

)m
2

+ 3
4

e−
√

8EJ/EC (2.9)

The strong change of the charge dispersion leads to a promising exponential insensitivity to
charge noise as can be seen from Eq. (2.9).



2.3. TRANSMON QUBIT 9

Figure 2.6: Development of charge dispersion with increasing ratio of EJ/EC . Solid lines
represent from bottom to top the ground and the �rst two excited states energy levels. Energies
are given in units of the transition energy E01, evaluated at the degeneracy point ng = 1/2.
On the one hand a higher ratio of EJ/EC �attens the charge dispersion out, on the other hand
the anharmonicity decreases. Figure taken from [10].
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2.3.2 Anharmonicity

Anharmonicity of the qubit is required to distinguish between the di�erent energy levels and
therefore to reduce the many-level system to a two-level system. This is due to the fact
that pulses manipulating the qubit transition do not match the frequency to excite the next
higher level. The length and shape of the pulse determine its frequency distribution, thus
anharmonicity limits the speed for qubit manipulations (Fig. 2.7c). The absolute and relative
anharmonicities are given by

α ≡ E12 − E01 αr ≡ α/E01. (2.10)

Initially the relative anharmonicity decreases as a function of EJ/EC and goes through zero.
This is called the anharmonicity barrier since at zero anharmonicity all energy levels are equally
spaced and it is not possible to use the CPB as a qubit. Finally, with higher EJ/EC ratio, αr
is negative and increases slowly to zero (Fig. 2.7a).

lim
EJ/EC�1

αr ≈ −
√

EC
8EJ

lim
EJ/EC�1

α ≈ −EC (2.11)

Since the charge dispersion dicreases exponentially and the anharmonicity only algebraically
there is a regime where charge noise is strongly suppressed before αr equals zero.

Figure 2.7: (a), (b) Relative and absolute anharmonicity as a function of the ratio EJ/EC .
Figure taken from [10]. (c) Plot of dephasing time T2 due to charge �uctuations and minimum
pulse duration Top = 1

α versus EJ/EC at ng = 1. Minimum pulse duration diverges if the
anharmonicity reaches zero (anharmonicity barrier). Figure taken from [14].
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2.3.3 Coupling Strength

To reach the strong coupling regime a good coupling of the transmon to the cavity is needed.
Although the charge dispersion decreases for a high ratio of EJ/EC , the coupling between
transmon and cavity increases. This is quite remarkable because �attened charge dispersion
means that there is no sensitivity to the dc component of ng while the ac response to the
oscillating �eld even increases [10]. The coupling factors of the cavity �eld to a transistion
between ith and jth level of the transmon are proportional to the charge matrix element

gij ∝ 〈i |n̂| j〉 . (2.12)

Asymptotically, the charge matrix elements are given by the following equations [10]:

|〈j + k| n̂ |j〉| EJ/EC→∞−→ 0, |k| > 1, (2.13)

|〈j + 1| n̂ |j〉| ≈
√
j + 1

2

(
EJ

8EC

)1/4

. (2.14)

Equation (2.13) and (2.14) lead to the fact that only nearest-neighbour coupling gi,i±1 is
relevant in the large EJ/EC limit. Between neighbouring transmon levels, the coupling strength
of the qubit to the cavity even increases with a higher ratio of EJ/EC . Di�erent coupling factors
as a function of EJ/EC are plotted in Fig. 2.8.

Figure 2.8: O�-diagonal charge matrix elements as a function of EJ/EC . Solid lines stand
for the exact result and dashed lines for the asymptotic behavior that is given in Eq. (2.14).
Single level transitions remain large and higher level transitions are strongly suppressed with
increasing ratio of EJ/EC . For coupling at high EJ/EC only neighboring transmon states are
relevant. Figure taken from [14].
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2.4 Cavity

In cavity QED, a cavity with a single harmonic mode is needed, which couples to the qubit
states. This can be realized with an electrical circuit in the microwave domain [3]. The
advantage of a 1D oscillator is its high �eld density [17]. In addition, a transmission line cavity
can be modelled as an in�nite series of LCR circuits [23]. On the chip, the transmission line
cavity is geometrically realized with a coplanar waveguide design [24, 23].

2.4.1 Transmission Line Resonator

The properties of a transmission line resonator can be modeled with distributed resistors, ca-
pacitors and inductors that have a given impedance per unit length (Fig. 2.9). The impedance
of an in�nitely long lossy transmission line is therefore given by [25]

Z0 =

√
R∗ + iωL∗

G∗ + iωC∗
, (2.15)

where R∗ is the resistance per unit length because of conductor losses, G∗ is the shunt con-
ductance per unit length due to dielectric losses between the conductors, L∗ is the inductance
per unit length given by the total self inductance of the two wires and C∗ is the capacitance
per unit length between the two conductors.

Figure 2.9: a) A transmission line with impedance Z0 and length L. b) The transmission line
can be represented as an in�nite series of capacitors and inductors. With the transmission
line characteristic impedance Z0 the capacitance (δC ) and inductance (δL) per unit length is
determined by Z0 =

√
δL/δC. c) This circuit can be transformed into a series of parallel LCR

oscillators. Figure taken from [14].

The propagating signal can be speci�ed with a complex propagation constant

γ = α+ iβ =
√

(R ∗+iωL∗)(G∗ + iωC∗), (2.16)

with β describing the phase of the wave and α the attenuation. A transmission line resonator
consists of a transmission line with open ends on both sides. Its length l is chosen to be an
integer of half a wavelength (l = nλ/2). Approximating the input impedance around resonance
frequency ω0 and assuming small losses α leads to [25]

Zin =
Z0

αl + iπ ω−ω0
ω0

. (2.17)
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The impedance of a parallel LCR oscillator is given by

ZLCR(ω) =
(

1
R

+
1
iωL

+ iωC

)−1

, (2.18)

with the resonance frequency ω = 1/
√
LC and a quality factor Q = ω0RC. The quality factor

can also be expressed by the cavity decay rate κ with Q = ω0/(2πκ). Near resonance this
equation can be approximated by [25]

ZLCR(ω) =
R

1 + 2iQω−ω0
ω0

. (2.19)

A comparison of Eq. (2.19) with Eq. (2.17) leads to the idea that the in�nite series of capacitors
and inductors modeling the transmission line can be mapped on LCR oscillators under following
substitutions:

R =
Z0

αl
(2.20)

C =
π

2ω0Z0
(2.21)

L =
2Z0

πω0
(2.22)

Reference [14] shows a quite close agreement between the LCR model and the transmission
line except for the DC behavior. This agreement is even better for higher Q values.

For an interaction with the qubit, the resonator must be connected to the environment. This
is realized by means of a capacitive coupling. A connection to the in- and output lines via
small capacitors causes a large impedance mismatch and can be thought of mirrors that re�ect
the photons forth and back. Since the losses are very low, a high quality factor for the cavity
can be reached. A detailed description of the capacitive coupling is given in reference [26, 23].

2.4.2 Coplanar Waveguide Resonator

So far the discussion was about microwave cavities independent of their geometrical realization.
The transmission line cavity employed is realized in a coplanar waveguide (CPW) design, which
is in principle a 2D version of a coaxial cable and has the ground on the same plane as the
center conductor. With this geometrical realization the impedance ZCPW0 is determined by
the ratio of center conductor width a to gap width s [30]. This has the advantage of a scaling
between very narrow gap widths with intense �elds where the qubit is placed and a larger
gap size for the interface with the printed circuit board. A schematic picture of the coplanar
waveguide resonator is shown in Fig. 2.10.
Properties of the coplanar waveguide resonator depend on the exact geometry. The speed of
propagation is given by [26, 23]

ve� =
c

√
µe�εe�

≈ c
√
εe�

, (2.23)

where εe� is the e�ective dielectric constant and µe� is the e�ective magnetic permeability
which can be approximated to µe� ≈ 1 for a non magnetic material. The length l of the
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Figure 2.10: Schematic picture of a coplanar waveguide resonator. The length is de�ned by
the two terminating gap capacitors. Figure taken from [14].

coplanar waveguide resonator is determined by the position of the two gap capacitors. This
leads to a m-th mode resonance frequency of

ωCPW0 =
πm

l

c
√
εe�

. (2.24)

2.5 Coupling of the Qubit to the Cavity

Figure 2.11 shows the arrangement of the cavity and the qubit. The qubit is placed inside the
cavity where the �rst harmonic of the electromagnetic standing wave has the largest amplitude
in the electric component. The tunneling of Cooper pairs inside the qubit can be in�uenced by
the center line that acts like a gate electrode for the cooper pair box. Applying a dc voltage
to the center line is possible via the input gap capacitor. Another method to control the qubit
states is to apply a B-�eld to tune the �ux in the split Cooper pair box.

In addition to the dc voltage there is an ac voltage V arising from photons in the cavity. This
voltage can be expressed by V = Q/C where Q is the charge operator. With the resonator
frequency ωr = 1/

√
LC the ac voltage can be expressed as

V =

√
~ωr
2C

(a+ a†) = V0(a+ a†), (2.25)

with V0 being the rms vacuum �uctuation. In the charge regime the number of excess Cooper
pairs can be approximated by N̂ ≈ 〈g|N̂ |e〉σx. At ng = 1 this expression can be simpli�ed to
N̂ ≈ σx leading to the following coupling between the qubit and the cavity,

Hcoupling =
1
2
V Q

Cg
CΣ

=
1
2
V0(a+ a†)2eσx

Cg
CΣ

= ~g(a+ a†)σx with g =
e

~
Cg
CΣ

V0. (2.26)

Cg represents the coupling capacitance and CΣ is the total capacitance of the Cooper pair box.
The coupling constant 2~g can be interpreted as the energy needed to move a Cooper pair
across a portion Cg/CΣ of the rms vacuum voltage �uctuations V0 in the resonator.
A rotating wave approximation (RWA) neglects the terms a†σ+ and aσ− can be simpli�ed to

Hcoupling = ~g(a†σ− + aσ+). (2.27)



2.6. HAMILTONIAN OF THE DRIVEN CAVITY QED SYSTEM 15

Figure 2.11: Schematic representation of the cavity and the qubit. The Cooper pair box
(green) is placed in the center of the cavity (blue). At this point the �rst harmonic of the
electromagnetic standing wave (pink) has an antinode. This con�guration leads to a strong
dipole interaction between the qubit and the photons. On the bottom is an equivalent lumped
element circuit representation. Figure taken from [13].

A RWA is only valid if the energy of the added qubit and photon excitation is much larger than
the coupling constant and the di�erence of the qubit and photon excitation (ωr+ωa � g, |ωr−
ωa|). Together with the qubit contribution, the second quantization of the electromagnetic �eld
and the dephasing terms Eq. (2.27) leads to the Jaynes-Cummings Hamiltonian

HJC = ~ωr(a†a+
1
2

) +
1
2

~ωaσz + g~(a†σ− + aσ+) +Hκ +Hγ . (2.28)

2.6 Hamiltonian of the Driven Cavity QED System

The cavity QED system consists of a transmon inside a cavity and is driven with an RF �eld at
freqency ωd. To describe this system the Hamiltonian in Eq. (2.28) has to be slightly modi�ed.
Since more than two energy levels are taken into account, a general form for Htransmon and
Hcoupling is used [13]. In this representation i and j stand for the transmon levels. A driving
RF �eld at ωd with a drive strength ξ is added [27].

Htotal = Hcavity +Htransmon +Hcoupling +Hdrive (2.29)

= ~ωca†a+
∑
j

~ωj |j〉 〈j|+ ~
∑
i,j

gi,j(a+ a†) |i〉 〈j|+ ~ξ(aeiωdt + a†e−iωdt)

In this general form every possible transition between the energy levels is included. A look at
Eq. (2.14) tells that at higher ratios of EJ/EC only neighboring transmon states are relevant
for coupling. With this fact Hcoupling simpli�es to a sum over gi,i±1.

2.6.1 Rotating Wave Approximation and Rotating Frame

Terms in the Hamiltonian that oscillate fast are neglected in the rotating wave approximation
(RWA). This assumption is reasonable if the driving frequency ωd is near resonance with the
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qubit because fast oscillating terms will average to zero on any important timescale. Only
transitions with the smallest energy di�erence are considered in a RWA. This leads to the fact
that the coupling Hamiltonian stimpli�es to two contributions. In the �rst term a photon is
absorbed from the qubit and in the second term the qubit emits a photon.
Unfortunately the Hamiltonian including a driving �eld is time dependent which complicates
the solution of the system. To get rid of the time dependence, a rotating frame at frequency
ωd is considered. Since the frame of reference is time dependent, some additional terms in
the Hamiltonian appear. With a rotating wave approximation and in a rotating frame the
Hamiltonian changes into the following form [27, 28]

H ′ =
∑
j=0

~(ωj−jωd) |j〉 〈j|+~(ωr−ωd)a†a+~
∑
j=0

gj,j+1(a |j + 1〉 〈j|+a† |j〉 〈j + 1|)+~ξ(a+a†),

(2.30)
which was used for the numerical simulations in this work.

2.7 Master Equation and Lindblad Operators

On one hand a quantum system (A) should be well protected from the environment (E) to
avoid dephasing and on the other hand an interaction is needed to get information about the
system's state. In the present case the system consists of cavity and transmon modes. The
environment can be thought of as the modes of the �eld to which the cavity is coupled via
transmission or scattering on cavity walls imperfections [31].
Since the environment is complex including a large number of degrees of freedom, it is not
possible to calculate every state during the evolution of the A + E system. An analogy to this
case is a classical system coupled to a heat bath. In this case a calculation of the movement
of every atom is not possible. A description of the system is given by statistical variables like
temperature or pressure. A similar approach is taken in quantum mechanics. Quantizing a
probability distribution leads to a density matrix. The dynamics of a quantum system A can
be described by a di�erential master equation for the reduced density matrix ρA. ρA is given
by the partial trace of the global density matrix over E. For a reduced density matrix of A the
environment E is not needed to be described explicitly.
A linear quantum process LA, that transforms the density operator into another, can result
from the coupling of the system with its environment.

ρA → LA(ρA), (2.31)

with LA being a quantum map. Quantum maps can be written in a simple form, called 'Kraus
sum representation'.

2.7.1 Kraus Sum Representation

A quantum process has to ful�ll a number of criteria to ensure that the resulting density
operator is still a positive hermitian operator of trace one with positive eigenvalues, which is
required for the probabilistic interpretation of ρA. LA should be a linear operation preserving
hermiticity, conserve positivity and the trace of ρA. A further criteria is complete positivity.
Assuming that A has been entangled in the past with a system B, the global system is described
by ρAB. Since B does not interact with A, the superoperator acting on ρAB is LA ⊗ IB.
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Complete positivity of LA means that the complete quantum map must preserve the positivity
of ρAB. 〈

φ(AB)
∣∣∣LA ⊗ IB(ρAB)

∣∣∣φ(AB)
〉
≥ 0, ∀

∣∣∣φ(AB)
〉
∈ HAB (2.32)∣∣φ(AB)

〉
represents a state of the A + B System . With these conditions for a quantum map

one can show [31] that any LA can be written as a �nite sum of terms

LA(ρA) =
∑
k

EkρAE
†
k,

∑
k

E†kEk = I. (2.33)

Ek are called the Kraus operators and I represents the identity matrix. The goal is to describe
the evolution of ρA in time. For this purpose the Kraus sum representation gives the dynamic
of ρA, which is in general not directly helpful because the Kraus operators are time-dependent.
This would lead to a generalized master equation [32] that is an integro-di�erential equation
and depends on previous states of the system. With a Markov approximation, wich is further
explained in the next section, the evolution of ρA can be written in a �rst order di�erential
master equation with time independent Kraus operators. This assumption can be used by
a wide class of physical environments and leads to a fast and easier solution of the Master
equation.

2.7.2 Markovian Approximation

Generally a Markov process is a random process whose future probabilities are determined by
its most recent values. That means the past or future of the system has no in�uence on the
present state of the system. The environment forgets information about the system after a
short time period
In the case of a qubit that is placed into a resonator and interacts with electromagnetic waves,
the system can be de�ned as modes of the cavity and the qubit. A Markov approximation
is reasonable in this case since the environment is a large system with many degrees of free-
dom and it is ideally not a�ected by its interaction with the cavity and qubit modes. The
environment gives no response to the state of the qubit and its cavity modes. Futhermore
every electromagnetic wave leaking out of the cavity passes a circulator that is connected to a
resistor. Ideally, there is no re�ection and therefore the past of the system has no in�uence on
the present state of the qubit and cavity modes.
For a derivation of the Lindblad master equation we look at a small timescale δt and two
assumptions are made:

1. δt� τS (τS : characteristic timescale of the system)

2. δt� τE (τE : time over which the environment forgets information about the system)

The second assumption is equal to a Markov approximation. This assumption leads to the fact
that the evolution of the system depends only on the present system density matrix. Therefore
the density matrix at a time δt+t can be written as a Kraus sum representation which depends
only on the time t. Under the �rst assumption we can neglect higher orders of δt since the
system density matrix evolves only a little bit in this time interval.

ρ̂S(t+ δt) = E(ρ̂S(t)) =
∑
k

Êkρ̂S(t)Ê†k = ρ̂S(t) +O(δt) (2.34)
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To match the terminating condition of �rst order in δt two di�erent types of Kraus operators
are needed. Because of the Markov approximation the Kraus operators include no information
about previous states of the system and are given by

Ê0 = ÎS + (K̂ − i

~
Ĥ)δt Êk =

√
δtL̂k k ≥ 1, (2.35)

with Ĥ, K̂ two arbitrary hermitian operators and L̂k the Lindblad operators that can be either
unitary or hermitian. ÎS represents the identity matrix in the System S.
To ful�ll the normalization condition for the Kraus operators a hermitian operator is constricted
to a condition given by the Lindblad operators.∑

k

ÊkÊ
†
k = IS =⇒ K̂ = −1

2

∑
k

L̂kL̂
†
k (2.36)

Therefore, the dynamic of the system with δt −→ 0 is given by the following equation

ρ̂S(t+ δt) = [ÎS + δt(K̂ − i

~
Ĥ)]ρ̂S(t)[ÎS + δt(K̂ +

i

~
Ĥ)] + δt

∑
k

L̂kρ̂S(t)L̂†k

= ρ̂S(t)−

{
i

~
[Ĥ, ρ̂S(t)] +

∑
k

[L̂kρ̂S(t)L̂†k −
1
2

{
ρ̂S(t), L̂†kL̂k

}
]

}
δt+O(δt)2

dρ̂S
dt

δt−→0=
1
i~

[Ĥ, ρ̂S(t)] +
∑
k

[L̂kρ̂S(t)L̂†k −
1
2

{
ρ̂S(t), L̂†kL̂k

}
] = L[ρ̂S ], (2.37)

where L[ρ̂S ] is the Lindbladian superoperator for the system. A shorter notation for Eq. (2.37)
is given with dissipators D[L̂k]ρ̂S .

L[ρ̂S ] =
1
i~

[Ĥ, ρ̂S ] +D[L̂k]ρ̂S (2.38)

For a closed system only one Kraus operator is considered which leads to the von Neumann
equation describing the time evolution of a density matrix in a closed system

∂tρ̂S =
1
i~

[Ĥ, ρ̂S(t)]. (2.39)

Looking at a system which is not closed, more Kraus operators are needed for a description
and therefore additional terms appear in the von Neumann equation.

In the case of a qubit placed inside the cavity, transverse decay, cavity leakage and pure
dephasing should be included with dissipators in the master equation. The simplest version,
with the same pure dephasing for every qubit level and a coupling strength gi,j(EJ/EC →∞),
Eq. (2.14), is

i~∂tρS = [HS , ρS ] + κD[a]ρS + γ1D[ẑ]ρS +
γφ
2
D[q̂]ρS , (2.40)

with q̂ =
∑

j j |j〉 〈j|, ẑ =
∑

j gj,j+1 |j〉 〈j + 1| and â being the photon annihilation operator.
For our simulation only the steady state is important, for which reason the left side of Eq. (2.40)
can be set to zero.
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2.7.3 Heat Bath

The previous Lindbladian superoperators were derived for general damping. In this section
we consider the specialized case of a reservoir in form of a heat bath at temperature T . The
relaxation of the cavity and qubit system in a thermal environment can be obtained from a
general thermodynamic argument.
If the system A gains a photon or steps up an energy level in the transmon qubit, the en-
vironment E must perform a transition downwards with the same energy di�erence. This is
necessary to conserve the energy of the A + E system. Therefore a given transition in the
environment will contribute to the gain of photons or the transition to higher transmon levels
at a ratio equal to the probability of �nding E in the upper state of this transition divided
by the probability of �nding it in its lower state. Since we assume that the environment is
a heat bath in thermal equilibrium at a certain temperature T , this transition ratio is equal
to e−β~ω, β = 1

kBT
, according to the Boltzmann distribution. Therefore a prefactor e−β~ω for

D[a†] and D[ẑ†] takes account for a �nite temperature. For the simulation only one heat bath
was assumed which implies that in equilibrium the cavity and qubit system and the heat bath
are at the same temperature T .

L[ρs] = − i
~

[H, ρs]+κD[â]ρs+e−βω~κD[â†]ρs+γ1D[ẑ]ρs+e−βω~γ1D[ẑ†]ρs+
γφ
2
D[q̂]ρs (2.41)

Assuming an average frequency ω for all transitions, the prefactor e−β~ω allows an estimation
of the temperature of the cavity and qubit system.
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Chapter 3

Sample Characterization and

Fabrication

There are two main components on the experimental sample, the cavity and the transmon
qubit. These two components are brie�y discussed in the following sections.

3.1 Cavity

For the measured sample in Yale, the cavity frequency is ωr/2π = 6.92 GHz and the quality
factor Q = 23′070 which implies a cavity linewidth of κ/2π = 300 kHz.
In analogy to mirrors in an optical cavity, gap capacitors re�ect the photons back and forth.
A high capacitance is realized with �ngers in the capacitor gap which increase the area and
therefore the capacitance (Fig. 3.1). In order to suppress parasitic modes between top and
bottom of the circuit board the top ground plate should be periodically connected to the bot-
tom using vias. Unforunately, there are no vias on the sample used in this work due to the
choice of sapphire as substrate material. To avoid parasitic modes, the resonator is con�ned to
a small volume with meanders (Fig. 3.1). This has an additional advantage of placing di�erent
cavity sizes on the same circuit board. The cavity frequency and the quality factor can be con-
trolled by the geometry of the resonator. The length of the resonator determines its frequency
and the quality factor is given by the size of the coupling capacitors at input and output [24, 23].

The resonator is fabricated using optical lithography. A niobium �lm is sputtered on top
of a sapphire substrate. In a next step a layer of resist is spun on. Afterwards a mask is
aligned and the sample is exposed to UV-light which changes the chemical structure of the
resist. In the case of a positive resist the exposed part can be removed by a developer. After-
wards the sample is etched via Reactive Ion Etch until the exposed niobium layer is removed.
Finally the remaining resist is washed o�.
Sapphire is a very hard material, unsoluble in the acids used for ion etching, which leads to
better quality resonators because of the smooth substrate surface and low dielectric losses. An
advantage of niobium is its high Tc of 9.2 K, which allows a characterization of resonators at
liquid helium temperatures (4 K).

21
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Figure 3.1: Optical image of a sample with two transmons coupled to a microwave cavity,
comparable to the sample used in this work. The cavity consists of a coplanar waveguide (light
blue) and two coupling capacitors (purple). The two transmon qubits are placed at opposite
ends of the cavity, where the electric �eld has an antinode. In the green inset a transmon is
shown; it consists of two superconducting islands that are connected with Josephson junctions
and an extra shunt capacitor. Figure taken from [33].

3.2 Transmon Qubit

There are two transmons on the measured sample, each with a di�erent coupling strength to
the cavity. The high g transmon is characterized with g/π = 350 MHz, it has a charging
energy of EC/h = 400 MHz and a maximum Josephson energy of Emax

J /h = 16.2 GHz. The
low g qubit has a coupling of g/π = 94 MHz, the charging energy is given by EC/h = 340
MHz and the maximum Josephson energy is Emax

J2
/h = 19.86 GHz. Both transmons have to

be placed at antinodes of the electric �eld in the cavity, as depicted in Fig. 3.1.

The Josephson junction size of 150 × 150 nm2 is very small to be reproducibly fabricated
by optical lithography. Smaller structures can be produced with e-beam lithography due to
the shorter e�ective wavelength of the electrons compared to UV light. Although aluminum
has a lower Tc than niobium, the former is preferred because a directional evaporation is pos-
sible and the junction can be produced with the Dolan bridge technique [29]. Aluminum can
be thermally evaporated and therefore a lift-o� process can be performed. A bilayer resist
system is used consisting of PMMA sitting on top of a copolymer. Since the bottom layer is
more sensitive to electrons than the top layer, an undercut pro�le of the resist is obtained.
This undercut is big enough to do a lifto� process with aluminum. In order to fabricate a
junction, a three dimensional structure of metal, oxide and metal is needed. This is achieved
by means of a Dolan bridge technique that uses a bridge of resist to generate a shadow on the
substrate. With a double angle deposition it is possible to get the right sequence of aluminum
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and aluminum oxide needed for the junction (Fig. 3.2). An advantage of this technique is that
it allows making self-aligned small junctions in one step.

Figure 3.2: Dolan bridge technique. a) A bilayer of resist is exposed to e-beam lithography. b)
Because of the di�erent sensitivity of the two resists it is possible to produce a bridge consisting
of the top layer. c) The bridge leads to a shadow that causes a gap in the aluminum �lm. d)
A thin �lm of aluminum oxide is generated when O2 is let into the evaporation chamber. e)
Aluminum is evaporated at a di�erent angle. Because of the shadow under the bridge, there
are regions with only a single layer of aluminum. f) A side pro�le of the structure after the
resist is washed o�. An electron that goes through the structure must tunnel through the
aluminum oxide barrier. Figure taken from [14].
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Chapter 4

Measurement Setup

Information about the qubit and cavity state is acquired by probing the sample with microwave
radiation and analyzing the signal transmitted through the resonator. The measurement setup
consists of four main parts that are described in the following sections. First, a coherent signal
has to be generated and modulated at room temperature. Afterwards, the signal enters the
fridge and is �ltered and attenuated before it interacts with the coupled qubit and cavity
system. Finally the transmitted microwaves are ampli�ed, mixed down to lower frequency,
�ltered and digitally post processed (Fig. 4.2).

4.1 Signal Synthesis

Microwave signal generators from Agilent are used to produce coherent RF signals. In this
work only one tone, ωRF is used to probe the cavity and qubit state. For the thermal �eld
measurements in section 6.5 noise is added to the resonator input to simulate thermal noise.
The simulation of thermal noise is explained in detail in subsection 6.5.1.

4.2 Cryogenics and Filtering

A Cryoconcept dilution refridgerator or a Kelvinox 400HA dilution fridge from Oxford Instru-
ments is utilized at Yale and ETH respectively to reach a base temperature of 15-20 mK at
which the sample is measured. The principle of a dilution fridge is based on cooling via phase
change.
When a liquid evaporates a phase change occurs. Molecules require energy to overcome the
strong cohesion forces in the liquid to escape into a gas state. If molecules leave the liquid,
they take energy from the surrounding environment, thus cooling the liquid since energy is
carried away.
Surprisingly a mixture of 3He and 4He separates in two phases at su�ciently low temperature.
The concentrated phase consists only of 3He and is lighter than the 4He rich dilute phase.
Similarly to a molecule that escapes liquid and cools its surrounding, a 3He atom that moves
from the concentrated phase to the dilute phase cools the dilution fridge. In order to reach
temperatures of 20 mK, 3He is removed from the fridge with a pump. Because the dilute
phase can not have less than 6% 3He at equilibrium, the removed 3He is replaced by 3He from
the concentrated phase. This leads to an increased movement of 3He atoms over the phase
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boundary and induces further cooling. The dilution fridge has a continuous cycle. The liquid
3He evaporates from the dilute phase in a still and is pumped out of the fridge. Afterwards
the gas is puri�ed and recondensed by passing a heat exchanger with liquid 4He. Finally the
incoming 3He is precooled with the outcoming 3He liquid by heat exchangers and reenters the
3He rich phase (Fig. 4.1).
In order to operate the system at low temperature of 10-20 mK, noise and heat carried into

Figure 4.1: Schematic picture of a dilution fridge.

the system by the coaxial cables should be suppressed. The RF drive on the sample is in
the order of GHz. In this frequency range Johnson noise is for all temperatures above 100
mK signi�cant. Johnson noise arises due to thermal excitation of the charge carriers in the
conductor. A voltage noise power spectral density in this range is proportional to the temper-
ature. Since a large bandwidth is required, the most e�ective suppression of noise is achieved
by attenuating the signal with 30 dBm. For temperatures between liquid He temperature 4 K
and base tamperature, the voltage noise power spectral density can be approximated by a
radiation spectrum of a one dimensional black body. In order to suppress thermal noise in this
section, a second 30 dBm attenuator was installed. Even with a total of 63 dBm attenuation
the signal has enough power to perform fast qubit operations in order of ns. An additional
e�ect of the attenuators is that they thermalize the center conducting coaxial cables.
After interacting with the sample the signal is ampli�ed. To avoid unwanted noise emission
back into the sample which disturbs the qubit and the desired signal, a circulator is inserted
between sample and ampli�er. Such a circulator has three ports, one of which is terminated to
a 50 Ω resistance. A circulator allows microwave signal propagation in one direction but blocks
in the opposite one. The noise generated by the ampli�er is dissipated at the 50 Ω termination
which is generally thermalized to the cold plate of the fridge. The isolation is about -20 dBm
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per circulator.

Figure 4.2: Used measurement setup for this work. The coherent input signal ωRF is on
bottom left, the output is on bottom right. Colors indicate di�erent temperature stages. The
generated signal is �ltered, attenuated and heat sunk at di�erent temperature stages before
it enters the resonator. After interacting with the qubit, the transmitted signal is ampli�ed,
�ltered and �nally measured. A �ux bias line with certain currend Iφ and a superconducting
coil is scematically represented on bottom left. The di�erent components are further explained
in the text.
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4.3 Demodulation and Post Processing

The signal is at GHz frequency, ω, and of the form

S(t) = A(t)sin(ωt+ φ(t)), (4.1)

with an amplitude A(t) and a phase φ(t). Computerized data aquisition requires a down
conversion from GHz to MHz, which is realized by means of an IQ mixer. The RF port
of the mixer is connected to the signal, input two to a local oscillator (LO) with LO(t) =
B(t)sin((ω + ωif )t). The LO signal is split and one branch of the LO signal is phase shifted
by π/2. Then, the RF signal is multiplied with each branch of the LO signal separately. The
mixer has an IF bandwith of 500 MHz. Finally, the resulting channels IIF and QIF are given
by

IIF = A(t)cos(ωif t+ φ(t)); QIF = (A(t) + εA)sin(ωif t+ φ(t) + εφ), (4.2)

where ε arises due to small inbalances between the two arms of the mixer. Here two di�erent
cases are distinguished. If ωif = 0 and only one channel is mixed down this is called homodyne
detection. If ωif 6= 0, it is referred as heterodyne. In this work alle measurements are done in
heterodyne detection.

For determining the amplitude of the transmitted signal, a single channel digital homodyne
method was used. In this method only one channel is considered.

IF (t) = A(t)cos(ωif t+ φ(t)) (4.3)

This signal is digitally multiplied with sin(ωifτ) and cos(ωifτ) seperately and integrated over
a time interval 2π/ωif to get two phase shifted fourier components of the IF signal,

Ĩ =
1

2π/ωif

∫ t+2π/ωif

t
cos(ωifτ)IF (τ)dτ Q̃ =

1
2π/ωif

∫ t+2π/ωif

t
sin(ωifτ)IF (τ)dτ.

(4.4)
From these two fourier components, the amplitude and phase can be reconstructed with

Ā(t) =
√
Ĩ2 + Q̃2 φ̄(t) = arctan

(
Q̃/Ĩ

)
, (4.5)

where the bar indicates an average value in a time interval of the size 2π/ωif . Typically an
integration over a time interval of 100 µs is carried out, corresponding to 1000 periods for a
typical IF signal of 10 MHz
In order to conduct the measurements in this work the signal frequency is always being changed.
In this case, the phase of the signal is arbitraryly set to a new value due to technical reasons.
Since only one channel is aquired in these measurements, φ̄ reproduces the phase jumps of the
frequency generator and only the amplitude of the signal must be is considered.

4.4 Qubit Control

The qubit frequency ωa ≈
√

8EJEC is controlled by applying a perpendicular magnetic �eld to
the squid loop of the qubit, modulating the �ux through the split junction. Since the magnetic
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�ux changes the Josephson energy a control of the qubit frequency is possible.
The magnetic �eld is generated by passing current through an external superconducting coil.
The current bias is applied by using a Yokogawa voltage source across a 10kΩ resistor. The
amount of magnetic �eld produced by the coil is 335 Gauss/A.
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Chapter 5

Numerical Calculations

A description of the vacuum Rabi splitting including more than two energy levels is realized
with Master equations. The Mathematica program used in this work was written by Lev
Bishop and Jens Koch. In this chapter the used parameters and the structure of the program
are explained.

5.1 Transmon Calculations

In a �rst step the eigenvalues and eigenvectors of the qubit Hamiltonian H/EC (Eq. (2.4)) are
calculated in the charge basis by diagonalizing the Hamiltonian. With a cuto� the dimension
of the charge basis is restricted. The cuto� is set to 15 therefore the dimension of the charge
basis is given by 2 · 15 + 1 = 31. Eigenvalues of this Hamiltonian correspond to the energies
of the transmon levels. From the eigenvectors ~vn the normalized coupling constants of the
transition i→j to the cavity �eld gi,j/g0,1 are calculated.

gi,j
g0,1
|i〉 〈j| = 1

g0,1
|i〉 〈i| n̂ |j〉 〈j| = (~v1, .., ~v2p+1)


−15 0 · · · 0

0 −14 0 · · · 0
...

. . .
...

0 · · · 0 14 0
0 · · · 0 15

 (~v1, .., ~v2p+1)T

(5.1)
Now it is possible to calculate the energies and normalized coupling constants of a given ng
and EJ/EC . The �ux dependence of the coupling constants is taken into account with EJ(φ).
Since we want to change the parameters to �nd a good �t to the measurement, it is convenient
to calculate the energies and coupling constants for di�erent parameters and to perform an
interpolation afterwards. With this method it is possible to get the energies and coupling
constants of new parameters quickly because an interpolation is much faster than the exact
numeric calculation.
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ωr resonator frequency ωd drive frequency
δ detuning ωr − ω01 g coupling strength g01

ξ drive strength γφ transmon pure dephasing rate
ejec EJ/EC ratio of the transmon qubit γ1 transmon energy relaxation rate
κ cavity relaxation rate

Table 5.1: Parameters used for calculating the master equation

5.2 Hamiltonian of the System and Solution of the Master Equa-

tion

The Hamiltonian of the system is set up in a rotating frame and a rotating wave approximation
is considered, Eq. (2.30). Afterwards the Hamiltonian is diagonalized and the energies and
eigenvectors are calculated. The environment of the system is taken into account with the
master equation (2.40). For setting up the master equation, nine parameters that are listed in
table 5.1 are needed.
The drive strength is gnerally given by [35]

ξ =
κ

2

√
PRF

PPhoton
, (5.2)

with PRFthe adjusted output power of the signal generator and PPhoton the power correspond-
ing to one photon in the cavity. For convenience the drive strength ξ in the simulation is
determined by 10(n+no�)/20, with n being the adjusted output power of the signal generator in
dBm and no� a constant o�set that represents the attenuation. Finally, the master equation
(2.40) is solved in steady state.

The same number of transmon and qubit levels are used for calculating the energies and
coupling constants. For the steady state solution of Eq. (2.40) the Hilbert space is constricted
to a maximum number of excitations N using the projector PN =

∑
0≤n+j≤N |n, j〉 〈n, j|, with

|n〉, |j〉 being the cavity and transmon eigenstates respectively. Since (N !)2 dimensional ma-
trices must be inverted for the steady state solution, this is the limiting factor of the program
for taking more energy levels into account.

5.3 Fitting Experimental Data

For the solution of the Master equation we get a density matrix ρS . The absolute value of
the photon annihilation operator expectation value, |〈â〉| = |trs(ρsâ)| can be compared to the
measured voltage. This fact is due to the chosen measuring method and is further explained
in chapter 6. To get the same amplitude for the simulation and the measurement, there is a
linear factor α to be taken into account which describes the scaling between input and output.
Even if no qubit is inside the cavity, there is still a small background signal. This is considered
with the background parameter b.
For some measurements the background was frequency dependent. A physical explanation for
this phenomenon is a second channel between input and output that does not interact with
the qubit. The interference of this channel with the signal leads to a frequency dependence of
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the background. Therefore the measured amplitude can be calculated with Eq. (5.3).

System parameters are g, κ, ωr, n, EJ/EC , γφ and γ1. A measurement of these parame-
ters is not always as accurate as needed for the simulations. Especially if the resonator and
the transmon qubit are not exactly on resonance, g and EJ/EC are slightly shifted. To get an
optimal agreement between simulation and measurement the system parameters are slightly
adjusted. Fit parameters are pt,pφ, no�, α and b.
First the parameters are adjusted by eye to get a good �t to the measurement. Since di�erent
parameters can cause the same change in the frequency spectrum if only one input power is
conisdered, the data is analyzed for di�erent input powers.
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Vt =
√

2α
∣∣trs(ρsâ) + 10(n+pt)/20eipφ

∣∣2 + b2 (5.3)

n adjusted power â photon annihilation operator
ρs steady state solution b background
α scalefactor between output and input pt, pφ parameters for the 2nd channel

5.4 Optimization

Finding an optimal �t to the measurement by eye valid for di�erent input powers is rather
di�cult. Therefore an optimization with the Levenberg Marquardt method [34], a nonlinear
least square optimization, was used. Since the simulation is limited in the number of photon
and qubit levels, some parts of the frequency spectrum can not be �tted well and were therefore
excluded from the optimization.



Chapter 6

Results and Discussion

The experiments presented in section 6.1-6.4 are measured at Yale University toghether with
Jerry Chow. Experiments in subsection 6.5 were performed at ETH Zurich together with
Johannes Fink.

6.1 Vacuum Rabi Splitting at Low Power

To observe vacuum Rabi splitting the qubit is tuned by a magnetic �eld such that the minimum
transition frequency ωa ≈

√
8EJEC is resonant with the resonator frequency ωr. This is only

possible with a split junction design, where the Josephson energy EJ depends on the magnetic
�ux trough the loop generated by the split junction. If degeneracy between cavity and qubit is
reached (∆ = ωa−ωr →0), the eigenstates are not |e, 0〉 and |g, 1〉 any more but even and odd
superpositions of these two states (|e, 0〉 ± |g, 1〉)/

√
2. To express the superposition of photon

and qubit states these eigenstates can be called phobit and quton. If the drive tone is resonant
with the transition from the ground state |g, 0〉 to one of the eigenstates with a photonic part,
transmission can be observed (Fig. 6.1b).
In Fig. 6.1a the vacuum Rabi avoided crossing is observable. The transmon qubit transition
frequency (ωa) is tuned through the resonator frequency (ωr) by applying a small magnetic
�eld that modulates the Josephson energy EJ . Transmission of the RF signal at frequency
ωRF is represented in colors (blue is high, white is low). A cut through Fig. 6.1a where
cavity and qubit are resonant, is given in Fig. 6.2. The minimum separation between the two
transmission peaks gives a vacuum Rabi splitting of 2g=94 MHz. The shape of the two peaks
is Lorentzian [3]. If cavity and qubit are slightly detuned from resonance, the two peaks have
di�erent amplitudes. The larger peak represents a dressed state which is mostly cavity like and
the smaller peak represents a state which is mostly qubit like with only a little bit of photon
character. Far away from the avoided crossing the states are either qubit or single photon
excitation and therefore only the photon state is observable in a resonator measurement.

6.2 Shape of the Rabi Peak at High RF Power

In the previous section a vacuum Rabi splitting at a power of -23 dBm was observed. For an
investigation of the vacuum Rabi splitting at high RF power we look �rst at one Rabi peak.
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Figure 6.1: (a) Vacuum Rabi avoided crossing. A magnetic �eld modulates the Josephson
energy and therefore the transmon frequency ωa. Colors reperesent the transmission amplitude
of the RF signal (blue is high, white is low) (b) Energy level diagram. Transitions leading to
the vacuum Rabi peaks are indicated with red arrows.

In �gure 6.3a the Rabi peak development with increasing RF power is visible. Colors in-
dicate the transmission amplitude of the RF signal at frequency ωRF (blue is high, white is
low). The peak changes its Lorentzian shape with increasing power and begins to broaden. At
a RF power of -21 dBm an additional e�ect is visible, a dip in the middle of the peak occurs.
This dip increases with higher RF power until the Rabi peak is entirely separated into two
peaks. For a better visibility cuts through the density plot are given in Fig. 6.3b on the right
hand side. From bottom to top the RF power is increased and an asymmetric supersplitting
can be observed.

There are two di�erent explanations for the dip in the Rabi peak at high power. An intu-
itive physical understanding can be achieved with an analysis of the e�ective Hamiltonian.
For a more exact and more analytical explanation the Bloch equations are used. These two
cases will be explained in the next sections.

6.2.1 E�ective Two-level System

For a system with g � κ, γ the transitions leading to the Rabi peaks are well separated in the
energy diagram (Fig. 6.4a). Therefore the ground state |0, g〉 and the asymmetric combination
of the �rst level 1√

2
(|0, e〉−|1, g〉) can be considered as an e�ective two level system (Fig. 6.4b),

∣∣∣↑̃〉 =
1√
2

(|1, g〉 − |0, e〉)
∣∣∣↓̃〉 = |0, g〉 . (6.1)

All experiments are measured in transmission. According to input and output theory [37] a
signal of bout =

√
κa is measured. Since the measurement is in heterodyne mode and only the
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Figure 6.2: Cut through the density plot in Fig. 6.1(indicated with arrows). A vacuum Rabi
splitting of g/π=94 MHz is observed.

amplitude A is measured, the signal is proportional to |〈a〉|.

I =
〈
bout + b†out

〉
Q =

〈
ibout − ib†out

〉
A =

√
I2 +Q2 = 2 |〈b〉| = 2

√
κ |〈a〉| (6.2)

To understand the measurement it is important to know how the photon annihilation operator
â changes the e�ective two-level system.

a
∣∣∣↓̃〉 = 0 a

∣∣∣↑̃〉 =
1√
2

∣∣∣↑̃〉⇒ a→ σ̃− (6.3)

Since the operator a changes pseudo spin up to spin down, it can be interpreted as a low-
ering operator σ̃− for the e�ective two level system. For a description of the dynamics, the
driven Jaynes-Cummings Hamiltonian for a two level system in RWA and rotating frame (cf.
Eq. (2.30)) is needed.

H =
1
2

~(ωa − ωd)σz + ~(ωr − ωd)a†a− ~g(a†σ− + aσ+) + ε(a+ a†) (6.4)

At resonance (ωr = ωa) we introduce a detuning ∆ = ~(ωr−ωd) = ~(ωa−ωd) for convinience.
Because only the e�ective two level system with its pseudo spin states is considered, a projection

P =
∣∣∣↓̃〉〈↓̃∣∣∣+

∣∣∣↑̃〉〈↑̃∣∣∣ to this hilbertspace is needed. This leads to an e�ective Hamiltonian

He� =
∆− ~g

2
σ̃z +

ε√
2
σ̃x = ∆′σ̃z + Ωσ̃x. (6.5)

For a pseudo spin system He� characterizes two magnetic �elds, one in x direction and one in
z direction. The pseudo spin precesses around the e�ective magnetic �eld Be�, as depicted in
Fig. 6.5a.

At high power is Ω � 1 and the pseudo spin precesses a long time around Be�, before it
relaxes back to the ground state. Decoherence leads to a phase change of the spin. On average
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Figure 6.3: (a) Transmission (blue is high, white is low) as a function of frequency and RF
power is visible. With higher RF power the transmission peak of the vacuum Rabi splitting is
broadened and shows a dip in the middle. (b) Cuts through the density plot (indicated with
arrows) with higher RF power from bottom to top, displaying a development from a Lorentzian
peak to an asymmetric doublet. The o�set between the cuts is for a better visibility.

Figure 6.4: (a) Since g � κ, γ, the two energy levels leading to the Rabi peaks are well
separated. Therefore the ground state |0, g〉 and the asymmetric combination 1√

2
(|0, e〉−|1, g〉)

can be considered as an e�ective two level system. (b) The e�ective two level system with

pseudo spin up
∣∣∣↑̃〉 and spin down

∣∣∣↓̃〉 is indicated with a dashed line.
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the state of the system is in the middle of the precession circle around Be�, which is indicated
in Fig. 6.5a with a green arrow. It was shown that the measurement signal is proportional to
|〈σ̃−〉|. Since σ− = σx + iσy and Be� has no contribution in y direction, the projection onto
the x-axis leads to the measured signal. This projection is given with a green arrow in Fig. 6.5
and can be expressed in terms of Ω and ∆′ with

T =
∆′Ω

∆′2 + Ω2
. (6.6)

The absolute value of the projection as a function of the detuning is shown in Fig. 6.5b. With
this graphic picture a splitting of the Lorentzian peak can be understood.

Figure 6.5: (a) A graphic representation of the e�ective Hamiltonian for the speudo spin.
The pseudo spin rotates around an e�ective magnetic �eld with a z-component −∆′ and a
x-component Ω. On average, the state of the system is given by the dashed green arrow and
the measured component is its projection on the x-axis indicated with a dashed yellow arrow.
This leads to a reduced transmission at zero detuning. (b) Transmission from Eq. (6.6) plotted
as a function of detuning ∆′.

At low power Ω is much smaller and the precession of the pseudo spin is slower. There-
fore the spin does not complete a whole circle around Be�, the system is on average near the
ground state and no splitting occurs. A more analytical explanation for the splitting of a Rabi
peak at higher power is given by Bloch equations.

6.2.2 Bloch Equations

The dynamic of the pseudo spin under in�uence of two magnetic �elds ∆′ and Ω can be
described with Bloch equations. For this purpose the pseudo spin is written as a polarization
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vector on the Bloch sphere ~P = (x, y, z), Pi = |〈σi〉| and a rotating frame of reference is chosen.

ẋ = − x

T̃2

−∆′ (6.7)

ẏ = ∆′x− y

T̃2

− Ωz

ż = Ωy − 1
T̃1

(z − z̄)

T̃1 represents the relaxation time and T̃2 the dephasing time of the e�ective two-level system.
At zero temperature z̄ = −1 and for the characteristic timescales exists the relation

T̃−1
1 = 2T̃−1

2 =
1
2

(T−1 + κ). (6.8)

Since we are only interested in the steady state the left side of the Bloch equations can be set
to zero. The measured component is given by

∣∣〈σ̃−〉∣∣ =
Ω
√

∆′2 + T̃−2
2

T̃ 2
2 ∆′2 + T̃1T̃2Ω2 + 1

(6.9)

and describes the transformation of a Lorentzian peak to a split peak at higher power.

6.2.3 Simulations Including Higher Energy Levels

The consideration of an e�ective two-level system with the Bloch equations leads to a dip in
the middle of the Rabi peak. A plot of transmission as a function of detuning is given in
Fig. 6.5 on the right side. In contrast to the measurement, this plot shows two peaks that
have the same amplitude. In order to describe the asymmetry of the doublet, higher energy
levels have to be taken into account. Cuts through the density plot in Fig. 6.3 at four di�erent
powers are shown in Fig. 6.6. The black lines are simulations based on the master equation
given in Eq. (2.40). A maximum number of seven excitations is taken into account, wich means
n+ j ≤ 7 with |n〉, |j〉 being the cavity eigenstates and the qubit eigenstates respectively. An
optimization of the paramters was done with a nonlinear least square method taking all RF
powers into account. By including a maximum number of seven excitations a good agreement
between simulation and measurement is obtained.

6.3 Vacuum Rabi Splitting at High Drive Power

In the previous section the shape of a Rabi peak with increasing RF power was described. The
occupation of higher energy levels leads, in addition to the dip in the Rabi peak, to other new
structures in the transmission spectrum at high RF power. In order to observe the in�uence of
high RF power on the resonator transmission in the frequency range between the Rabi peaks
the qubit with a low coupling constant was measured at di�erent RF powers (Fig. 6.7a). Trans-
mission of the RF signal at frequency ωRF is given in colors (blue is high, white is low). For
a power of -8 dBm two new peaks appear at 6.88 GHz and 6.95 GHz (indicated with dashed
arrows). These are two photon transitions from the ground state to the second excited state.
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Figure 6.6: Cuts through the density plot in Fig. 6.3 at four di�erent RF powers. The black
lines are simulations based on a master equation that includes a maximum number of seven
excitations. A good agrement between simulation is obtained, especially for the asymmetric
doublet at high drive power.

In Fig. 6.7b the transitions causing the new peaks are indicated in the energy diagram with
dashed lines.

Cuts through the density plot (Fig. 6.7a) at di�erent RF powers are shown in Fig. 6.8. The
simulation (in black) is based on the Lindbladian superoperator in Eq. (2.40) with a maximum
number of seven excitations. A good agreement with the measurement is reached even for the
two photon transitions at -3 dBm and -8 dBm. Between 6.9 GHz and 6.95 GHz additional
peaks are visible due to thermal excitation of the sample.
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Figure 6.7: (a) Transmission (blue is high, white is low) as a function of frequency ωRF and
RF power. Additional peaks are visible at -8 dBm arising due to excitations of the system to
higher energy levels. (b) Energy diagram including a maximum of two excitations. Transitions
leading to the vacuum Rabi peaks are indicated with solid arrows. Two photon transitions are
depicted with dashed arrows.
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Figure 6.8: Cuts through the density plot in Fig. 6.7a at three di�erent RF powers (indicated
with arrows). The simulations which take a maximum number of seven excitation into account
are in good agreement with the measurements. For -3 dBm additional peaks between the two
Rabi peaks are visible that do not match with the theory. These peaks arise due to thermal
excitation.
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6.3.1 Avoided Crossing at High Drive Power

Fig. 6.9 shows an avoided crossing at a drive power of 4 dBm. In addition to the avoided
crossing at low drive powers [3], fan-like structures due to multiphoton transitions are visible.
Every individual branch can be identi�ed with a transition in the Jaynes-Cummings ladder.
Each multiphoton tranistion appears initially as a single peak and supersplits as the drive
power is increased.

Figure 6.9: The transmon frequency ωa is controlled by a magnetic �eld. Colors indicate the
transmission of the RF signal at frequency ωRF (blue is high, white is low). RF power is �xed
at 4 dBm. Compared to an avoided crossing at low drive power (Fig. 6.1a) additional fan-like
structures are visible which arise due to transitions to higher energy levels.
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6.4 Measurements at Higher Temperature

In the previous subsection 6.3 thermal peaks were observed between the two Rabi peaks. In
order to investigate thermal peaks due to a coupling of the cavity and qubit system to a heat
bath, the vacuum Rabi splitting was measured at an elevated temperature of 140 mK. A higher
temperature leads to excitations of higher energy levels. A comparison of the plot in Fig. 6.10a
with the measurement at a temperature of 20 mK (Fig. 6.7a) shows that two additional peaks
at 9 GHz and 9.4 GHz already appear at a drive power of -30 dBm.

The di�erent position in frequency for thermal peaks and peaks obtained with high drive
power can be explained with a look at the energy diagram in Fig. 6.10b. A thermal excitation
with a subsequent measurement is indicated with solid arrows. The two photon transition
leading to the excitation of the same energy level is depicted with dased arrows. There is an
energy di�erence between the high drive power transitions and the measured transition after
the thermal excitation, which leads to di�erent positions in frequency.

Figure 6.10: (a) Transmission as a function of frequency and RF power. This measurement
was executed at a temperature of 120 mK. Already at -30 dBm two additional peaks due
to thermal excitations are visible. (b) Energy diagram including two levels. Dashed arrows
represent a two photon transition. Solid arrows indicate a thermal excitation from |0〉 to |1+〉
and a subsequent measurement.
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Figure 6.11: Cuts through the plot in Fig. 6.10a at di�erent RF powers (indicated with arrows).
For -13 and -8 dBm the simulation is in good agreement with the theory. At higher RF
power transitions to higher energy levels become more important and a simulation based on
a maximum of seven excitations is no longer accurate. Especially the peaks between 6.9 and
6.94 GHz do not match with the theory.
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For the simulation of the system at higher temperature the Lindbladian superoperator in
Eq. (2.41) was used. In Fig. 6.11 cuts through the density plot for di�erent powers are shown.
For the optimization of the paramters the part from 6.9 GHz to 6.94 GHz was not considered.
This restriction can be justi�ed by a look at Fig. 6.12. In this �gure the transitions between
the energy levels are indicated by lines at the according frequencies. An accumulation of tran-
sitions can be observed at frequencies where the two thermal peaks appear. This leads to
the conclusion that for a better agreement between measurement and simulation more energy
levels should be considered. Unfortunately, we are limited in the number of energy levels for
the simulation therefore these datas can not be perfectly explained by the theory. A neglection
of the two thermal peaks for the optimization is reasonable.

In Fig. 6.11 a good agreement between simulation and measurement at -13 dBm and -8 dBm
is achieved even for the two thermal peaks. At -3 dBm the theory and simulation still coincide
except for the intervall from 6.9 GHz to 6.94 GHz. As already mentioned, a maximum of seven
excitations are not enough to describe the measurements. From the optimized parameters
the thermal prefactor is given by e−βω=0.1. With an average transition frequency of ω=6.9
GHz the temperature of the system can be estimated to 140 mK. The experimentally realized
temperature of the cold plate inside the dilution fridge is 120± 20 mK.

Figure 6.12: Cut through the plot in Fig. 6.10a at 0 dBm RF power. Transitions between
energy levels are ploted as lines at the according frequency.

6.4.1 Coupling Strength

According to Eq. (2.14) the coupling strength g increases with
√
n from the n-1th to the nth

energy level. In this idealized case it is assumed that EJ/EC →∞. For the measured sample
EJ/EC = 51 at resonance and the coupling strength increases not exacly with

√
n. Since the

ratio EJ/EC is rather small for this sample, the exact calculation of the coupling strength
could have a signi�cant impact on the transmission.
For a better comparison of g(EJ/EC → ∞) and g(EJ/EC = 51) both cases are plotted for
di�erent powers in Fig 6.13. The results show that there is no signi�cant di�erence visible
between the two Lindbladian superoperators and that the system is well described by an
idealized g(EJ/EC →∞).
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Figure 6.13: Comparison between two di�erent Lindbladian superoperators used for the simu-
lation. In this regime a consideration of the coupling strength dependence of EJ/EC compared
to the idealized case of g(EJ/EC → ∞) makes no di�erence. Due to the smaller step size an
additional peak apppears at 6.941 GHz which is not resolved in the simulation plotted in
Fig. 6.11.
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6.4.2 Dephasing of Higher Energy Levels

All experiments are performed in the transmon regime where charge dispersion is strongly
suppressed at least for the lower energy transitions. In terms of charge noise a di�erence is
observable between higher and lower energy levels. Although no sensitivity to ng is visible for
lower energy levels, there is still a charge dispersion remaining for higher energy levels. This
leads to the fact that higher energy levels are more a�ected by charge noise. In our experiment
this is the main source for dephasing of the qubit. The di�erent sensitivities of the energy
levels to charge noise can be taken into account with a more speci�ed dephasing term in the
Lindbladian superoperator.

L[ρ̂S ] =
1
i~

[Ĥ, ρ̂S ] + κD[a]ρS + γ1D[ẑ]ρS +
γφ
2
D[q̂′]ρS (6.10)

q̂′ =
∑
j

{Ej(ng = 0.5)− Ej(ng = 0)} |j〉 〈j|

(6.11)

q̂′ represents the total charge dispersion measured from the peak to peak value in the same
energy band.

A comparison between data and simulation shows a very good agreement (Fig. 6.14). Es-
pecially the two main peaks are �tted well by the simulation. A direct comparison between a
Lindbladian superoperator taking into account a higher dephasing at higher energy levels and
a Lindbladian superoperator with equal dephasing for every energy level is shown in Fig. 6.15.
Di�erences between the two simulations appear at the top of the two main peaks and for
the peak height of the middle section between 6.9 − 6.94 GHz. The description for the two
Rabi peaks is better with faster dephasing for higher energy levels. A reduced peak height
is observed in the middle section which is not in agreement with the measurement. Since a
least square optimization between data and theory is done discarding the middle part between
6.9 GHz and 6.94 GHz this should not be taken into account.
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Figure 6.14: Measurement and corresponding simulation based on the Lindbladian superoper-
ator in Eq. (6.11), which takes an increased dephasing for higher energy levels into account.
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Figure 6.15: Comparison between a simulation with higher γφ for higher energy levels and
a simulation that has the same dephasing for every energy level. A di�erence in the height
of the two Rabi peaks is visible. With higher γφ for higher energy levels a better agreement
between theory and measurement for the two Rabi peaks is reached. An additional peak is
visible compared to Fig. 6.14 because of the smaller step size in frequency.
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6.4.3 Avoided Crossing at High Drive Power

The main di�erences between the avoided crossing at high temperature (Fig. 6.16) and at
low temperature (Fig. 6.9) are an increased transmission at the resonator frequency ωr =
6.92 GHz and two lines with decreased transmission at a magnetic �eld of 15.03 V and 15.16
V, respectively.
For a better understanding of the measurement the avoided crossing was simulated with a
maximum number of six excitations (Fig. 6.17b). For this simulation optimized parameters
over di�erent powers were used and the dependence of EJ on the magnetic �eld was determined
experimentally. There are two evident di�erences between experiment and simulation, the two
lines with decreased transmission for 15.05 V and 15.16 V disappeared and the transmission
peaks at the cavity resonance frequency are further separated form each other. As already
mentioned in Chapter 4, two qubits are placed on the measured sample. The presence of the
second qubit in�uences the measured qubit. Since the simulations take only one qubit into
account, this could be a reason for the di�erence between measurement and simulation.
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Figure 6.16: The transmon frequency ωa is tuned by a magnetic �eld. Colors indicate trans-
mission of the RF signal at frequency ωRF (blue is high, white is low). The temperature is set
to 140 mK and RF power is �xed at -1 dBm.
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Figure 6.17: (a) Measurement for an avoided crossing at a temperature of 140 mK and RF
power of -1 dBm. High transmission is colored white and low transmission dark blue. (b)
Simulation of the avoided crossing. Two lines with decreased transmission at 15.03 V and
15.16 V respectively, are not visible in the simulation, they appear most likely due to the
presence of a second qubit on the same chip. The transmission peaks close to the cavity
resonance frequency are further separated form each other compared to the measurement.
This separation is due to the limited number of levels in the simulation. A consideration of
more energy levels would lead to a frequency shift for the thermal peaks (Fig. 6.12).
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6.5 Determination of Thermal Photon Numbers

In the previous section good agreement between measurement and simulation at increased
temperature up to 140 mK was observed for su�ciently small coherent drive strengths. If the
measurements are performed in this range and all relevant sample parameters are well known,
it is interesting to try to use the measurement of the Vacuum Rabi splitting as a 'thermometer'
for the e�ective cavity and qubit system.

The sample is placed on the cold plate inside the resonator. A more convenient way to deter-
mine the temperature of the e�ective cavity and qubit system compared to the vacuum Rabi
splitting measurement would be to measure the cold plate temperature. The main problem of
this method is that thermal photons from the drive lines heat up the sample, which leads to a
temperature gradient between the cold plate and the sample.

6.5.1 Simulation of Thermal Noise

An increase of the real temperature with the dilution fridge can not be realized as accurate
as needed and leads to unwanted changes in the sample like the loss of superconductivity for
a temperature higher than Tc. Therefore an other approach was chosen where only the elec-
tromagnetic signal that enters the cavity is at an increased temperature. To simulate thermal
noise that would arise in an electromagnetic �eld at increased temperature, noise is added to
the resonator input.

White noise is created with an arbitrary wave form generator (AWG) outside of the dilu-
tion fridge. The frequency bandwidth of the noise is limited to 0.4 GHz due to the AWG
bandwidth. Therefore the noise must be centered to the resonator frequency with a mixer.
The noise signal must be ampli�ed before it enters the mixer, to ensure that the leakage signal
of the mixer vanishes inside the noise signal. To tune the noise power, a variable attenuator is
used. Finally the noise signal is combined together with the RF signal and enters the dilution
fridge on the same line. In order to change the temperature of the signal, di�erent noise powers
are applied to the resonator input (Fig. 6.19).
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Figure 6.18: Experimental setup for the simulation of thermal noise.

In experiments presented in the previous section 6.4 the sample was physically heated which
led to an occupation of higher qubit modes and higher cavity modes under the assumption of a
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thermal equilibrium between cavity and qubit system. With this assumption a good agreement
between theory and measurement was reached.
For experiments in this section only the signal is at an increased temperature. A drive sig-
nal with additional thermal noise yields an occupation of higher cavity modes. Since the
anharmonicity of the transmon qubit is low, again higher qubit levels will be occupied and
are relevant for the simulation. Therefore a theoretical description with the same model is
reasonable.

6.5.2 Photon Number and Power Spectral Density

The average photon number of a thermal electromagnetic �eld is given by [37]

n̄ =
1

e
~ω
kBT
−1
. (6.12)

The spectral density of power for a one dimensional electromagnetic �eld can be described by
the one dimensional black body radiation spectrum

S(ω) =
~ω

e
~ω
kBT − 1

. (6.13)

The spectral density of power is plotted versus frequency in Fig. 6.19. As already mentioned in
section 6.5.1 noise with a constant spectral density of power is applied to the resonator input.
This approximation is only valid for high temperatures since S(ω) decreases exponentially in
frequency for low temperatures (Fig. 6.19).
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Figure 6.19: Spectral density of power at temperatures 300 K, 4 K, 100 mK, 50 mK and 20
mK from top to bottom. Dashed lines represent the spectral density at a frequency of 6.5 GHz
on the resonator input with photon numbers of n=0.1, 0.01, 0.001. Figure taken from [38].

According to reference [38], the general case in Eq. (6.13) can be specialized to the relevant
noise spectrum which is that of a 50 Ω matched attenuator on the transmission lines connecting
from room temperature to 20 mK. This leads to a geometric prefactor of π/8. With a constant
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o�set n0 that takes �nite temperature into account, the photon number inside the cavity is
given by

n =
π

8
· S(ω)

~ω
+ n0. (6.14)

From equation (6.14), the extracted photon number from the simulation is expected to be
linear with the applied noise power spectrum. The o�set n0 leads to a temperature of the
cavity and qubit system. By observing this temperature it can be judged whether the thermal
noise on the coupled lines is low enough to prevent a thermal population of higher energy
levels.

6.5.3 Measurements

All measurements in this section are performed at ETH Zurich with a sample with the following
parameters are slightly. The qubit has a charging energy of EC/h = 231.7 MHz and a maxi-
mum Josephson energy of EmaxJ /h = 35.11 GHz, the coupling constant is given by g/π = 265
MHz. The cavity can be characterized with a resonant frequency of ωr/2π = 6.440 GHz and
a width of κ/2π = 1.57 MHz.

In Fig. 6.20 the vacuum Rabi Splitting is shown for three di�erent noise powers with a con-
stant drive power of -30 dBm. Increased noise powers were taken into account with a higher
temperature parameter in the simulation, all other parameters were �xed. The simulation is
in good agreement with the measurement, especially for the thermal peaks that are enlarged
in an inset. For this sample the coupling constant g was higher and therefore the Rabi peaks
were seperated to a larger extent than in previously measured vacuum Rabi splittings.

Thermal peaks in the vacuum Rabi splitting with increasing noise power from bottom to top
are shown in Fig. 6.21a. To get a good �t to the data, a nonlinear least square optimization
was performed on the temperature parameter from 6.455 to 6.555 GHz. For low noise power
the simulation is a good description of the measurement. At higher noise power the height of
the two thermal peaks is not well �tted.

The average photon numbers can be extracted from the simulation and are plotted as a function
of the power spectral density in Fig. 6.21b. The absolute value of the applied power spectral
density was obtained with an ac Stark shift measurement [39]. A linear �t to the measurement
points is indicated with a red line. As expected, a linear dependence of the thermal photons
to the power spectral density can be observed. However, the slope does not match with the
theoretical prediction of a π/8 geometrical prefactor. Further investigations are needed to
understand this discrepancy.
The o�set of 90 mK arises due to real thermal excitation of the signal which can be caused
by too little attenuation or not well enough thermalized attenuators. In a next step the signal
temperature should be decreased to prevent thermal population of higher energy levels and to
ensure that the cavity is in the ground state.
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Figure 6.20: Vacuum Rabi mode splitting for three di�erent noise powers measured with
a coherent drive power of -30 dBm. The simulation is in good agreement with the mea-
surement, especially for the thermal peaks which are enlarged in an inset. The parameters
of the simulation are ωr = 6.4365GHz, δ = −7 MHz, 2g = 264.3 MHz, γφ = 0.9 MHz,
EJ/EC(ωr) = 112.211 , γ1 = 1.9 MHz, κ

2π = 1.57 MHz, α = 9.8206 ·10−6 ,b = 7 µV, pt = −62,
ptφ = −5, ξ = 10128.44/20 Hz.
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Figure 6.21: (a) Thermal peaks in the vacuum Rabi splitting plotted from bottom to top with
increasing noise power. An o�set of 0.02 T/T0 was generated between the curves for a better
visibility. For low noise power the simulation is a good description of the measurement. At
higher noise power the height of the thermal peaks is not well �tted. (b) The average thermal
photon number and the temperature extracted from the simulated thermal peaks is plotted as
a function of the noise power. The red line is a linear �t to the measurement points.



Chapter 7

Conclusion

The observation of the vacuum Rabi splitting for high probe powers led to additional features
in the transmission spectrum. At high RF powers the Rabi peaks change their shape from
Lorentzian to a doublet and additional peaks appear in the spectrum due to multi-photon
transitions to higher energy levels.

In order to explain the observed Rabi peak splitting the transmon and cavity system was ap-
proximated by its lowest two levels. An intuitive picture with the quasi spin rotating around
an e�ective B-�eld gives a better understanding for a dip in the Rabi peak. With a more an-
alytical model given by Bloch equations a description of the Rabi peak splitting over di�erent
powers is possible. The asymmetry of the peaks in the measurement is due to transitions to
higher energy levels. A good agreement with the measurement was reached with a numerical
calculation that takes a maximum number of seven excitations into account. This simulation
was written in Mathematica and calculates the transmon levels in charge basis. For a descrip-
tion of the entire system the master equation was solved in steady state.
Not only for the description of the Rabi peak supersplitting was this simulation useful. Espe-
cially the peaks that arise due to transitions to higher energy levels could be described really
well. For the measurement at 140 mK a temperature dependent coupling to the environment
was considered in the master equation. This led to good agreement with experimental data in
the low power regime. A description at higher temperature would need to take more energy
levels into account. An adoption of the program to include more energy levels would require
an optimization of the algorithm to keep the calculation time within reasonable limits.
At low drive power and temperature the simulation of the vacuum Rabi mode splitting spec-
trum was used as a measurement of the e�ective cavity and qubit system temperature. In
order to change the temperature, noise with di�erent power spectral densities was added to
the resonator input. As theoretically predicted, a linear increase of the thermal photon number
with noise power spectral density was observed. An o�set of 90 mK corresponding to a thermal
intra-cavity photon number could be determined very accurately.

With the agreement between measurement and simulation in every peak, the theoretical de-
scription of the system by a generalized Jaynes-Cummings Hamiltonian and its

√
n nonlinearity

is con�rmed. Another approach could be a more accurate consideration of the sample temper-
ature with two di�erent heat baths: one for the cavity modes and one for the qubit modes.
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Further investigations are needed to understand the slope of thermal photons as a function
of noise power spectral density more accurately. In a next step the temperature of the cavity
and qubit system should be decreased with more attenuation or a better thermalization of the
attenuators to avoid unwanted thermal population of qubit levels and to ensure that the cavity
is in the ground state.
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