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Abstract

Improvements in the performance of electronic devices are largely

based on the continued miniaturization of electronic components. To cir-

cumvent physical limits inherent in silicon technologies, single molecules

may be used for the development of nanoscale electronics. To characterize

molecular devices, measurements of their electrical transport properties

must be performed. The high impedances of molecular devices, on the

order of the quantum resistance and above, limit the speed with which

measurements may be performed. Measurement resolution can be in-

creased to nanosecond time scales by embedding the molecule in a high

frequency resonant circuit, an increase of several orders of magnitude over

low frequency measurements. Sensitivity can be optimized by impedance

matching to the molecule. In this project, high frequency impedance

transformation circuits for molecules or other nanoscale quantum elec-

tronic systems are investigated. Results on experimental realizations of

lumped and distributed element PC Board impedance transformers are

reported. The reactive and loss components limiting high bandwidth op-

eration for large impedances are identified. To reduce losses, low temper-

ature measurements are performed for distributed element circuits. For

ultra-low loss operation with superconductors, a device layout for optical

or electron beam lithography is designed, and considerations for future

quantum device integration are described.
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1 Introduction

1.1 Molecular Electronics

What is molecular electronics? This question turns out to be a deep one that
may be approached in many ways. Let us begin with the name.

Fundamentally, the term ”electronic” refers to the use of electrons, and ”elec-
tronic” devices are those that are characterized by their transport of electrons.
How is this characterization carried out? Again the answer is intuitive: by
hooking up two metal leads to the device and then reading out its resistance on
an ohmmeter. Then electromagnetic theory, in particular Ohm’s Law V = IR,
tells everything one needs to know about how much current flows through the
device when a voltage is applied, or vice versa. This is made useful with the
creation of a transistor: an electrical element whose resistance is controlled by
an electrical parameter, such as a voltage gate.

”Molecular”, of course, refers to molecules, the most basic combinations
of atoms that together form all the kinds of matter seen in the natural world.
”Molecular electronics” is therefore the use of molecules themselves as electronic
devices.

Let us now consider the question of molecular electronics from another per-
spective. The semiconductor industry, based on transistors operating in silicon,
has for years been following Moore’s Law, which states that the number of tran-
sistors on a chip doubles approximately every 18 months. This trend has been
followed closely until almost the present day. The reason for doing so rests on
sound scientific and economic principles: chips with a greater number of smaller
transistors are faster and more powerful.

Things can only get so small, however, and the limits of Moore’s Law rests
with the laws of physics. At the nanoscopic scales necessary for the further
miniaturization of transistors, silicon technology is no longer capable of sustain-
ing the trend.

The question of molecular electronics now appears to be, in fact, quite rele-
vant. They are small and could potentially consume less power in a commercial
application compared to current technologies. Thus molecular electronics has
an intrinsic scientific and technological importance to be explored.

Since molecules are so small, however, another legitimate question may be
asked: just how exactly does one attach an ohmmeter to a single molecule? This
question cannot be answered so quickly; a variety of scientific work has been
conducted in an attempt to do so [1]. In what follows, the current approaches are
summarized, and the goals of the project described in this report are explained.

1.1.1 Current Approach

A variety of approaches to the problem of electronically accessing molecules
have been developed [1]. In one technique, the molecules lie scattered on a gold
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Figure 1: Left: top view and cross-section of the mechanically-controlled break
junction with (1) gold nanowire with thinned region, (2) counter supports, (3)
bending beam, (4) epoxy adhesive, (5) piezoelectric pushing rod. Right: Elec-
tron micrograph of a lithographically fabricated MCBJ made of Co with metal
thickness 150 nm. Picture credit: J. van Ruitenbeek et al.

substrate, and the tip of a scanning tunneling microscope (STM) is used to
pick up one end of the molecule, leading to an electronic connection. Another
technique utilizes a substrate filled with holes, which lies on gold. The molecules
are placed inside the holes leading to a connection on one end, and then capped
with a gold particle, allowing for an electronic connection with an STM.

The technique that this report shall be referring to, however, is a more di-
rect approach, in essence attempting to fabricate the leads for a resistance, or
conductance, measurement. In this technique, a gold nanowire is formed, with
a small thinned portion. The thinned portion is then broken; this can be ac-
complished by: 1) the nanowire is held down on both ends and pushed up from
the center via a piezoelectric pushing rod, causing the thinned portion to break,
known as a mechanically controlled break junction (MCBJ) (see Fig. 1); 2) a
current is sent through the nanowire in a controlled fashion, i.e. negative feed-
back control, such that the crystal lattice of the thinned portion experiences a
mechanical force and, with the right amount of current, electromigrates, essen-
tially blowing open like a fuse and forming an electromigrated break junction
with typical separations of 1 nm [3].

With the break junction, or nanogap, formed, what is left is to place a
molecule inside. The basic method is to apply a droplet of a solution containing
the desired molecule over the area of the nanowire (see Fig. 1, left panel).
Clearly, the process of molecule attaching to leads is probabilistic, and may
result in the desired one-molecule configuration, but problems may arise inside
the gap: multiple molecules, other undesired molecules, various orientations of
the molecules, and filaments of the original nanowire. In each case, the electrical
properties measured will not be that of the desired single molecule in the proper
orientation. To improve the chances of a proper connection, thiol groups which
bond strongly to gold may be chemically attached to the ends of the molecule
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Figure 2: A typical setup for DC measurement of molecular electronics and other
quantum systems. A voltage V is applied through a wire with stray capacitance
CW to a resistive load ZL.

under study.
It is shown that a variety of issues are presented to the scientist wishing

to experiment with molecular electronics. Let us now examine a separate is-
sue, independent of the particular setup at the nanogap itself. The following
section will explore the DC measurement setup assumed throughout the above
experiments and demonstrate the limitations of such a setup.

1.1.2 Limitations of the DC Technique

Figure 2 illustrates a simplified typical setup for DC measurement of molecular
electronics experiments. In this setup, a voltage V is applied through a trans-
mission line with stray capacitance CW to a load ZL. For now, ZL is assumed
to be purely resistive, and will be referred to as Re[ZL]; more general cases will
be considered later. The measurement typically done is to place a large current
bias resistor in series with the load Re[ZL] and read the current induced, thus
extracting information about the conductivity of the load. Note that Re[ZL] is
large, since ideally a minimum number of conductance channels (i.e. a single
molecule) are open, requiring a much larger bias resistor.

The stray capacitance CW , present in all wires, forms along with the load
Re[ZL] an RC circuit with associated characteristic time constant τ = Re[ZL]CW.
The characteristic time constant τ defines the time scale on which the voltage
drop across the load Re[ZL] can change. In other words, if at voltage V = V0

there is a voltage drop VL across Re[ZL], then when another voltage V = V1 is
applied Re[ZL] will take at least the time τ to exhibit a second voltage drop V ′

L.
Thus τ defines a bandwidth given by

BW ≡ (2πτ)−1 =
1

2πRe[ZL]CW

. (1)

This bandwidth is the frequency at which Re[ZL] can respond to a change in
applied voltage. Thus BW places an upper limit on the frequency at which
different voltages may be applied to probe Re[ZL].
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Typically, CW is on the order of 100 pF for a 1 meter long line. If Re[ZL] = 10
kΩ, the order of the quantum resistance h̄/2e2, then τ = 10−6 seconds and
BW ≈ 150 kHz. Single molecules have been shown to exhibit resistances on the
order of 1 MΩ, giving BW ≈ 1.5 kHz.

This bandwidth is, in fact, limited: it is possible to improve this by several
orders of magnitude by replacing the DC measurement setup with a sensitivity-
optimized high frequency technique. In such a technique, the bandwidth is a
function of parameters set by the measurement circuit design, and thus can be
optimized for fast response times on the order of nanoseconds. In addition, these
techniques apply not only to molecular electronics but to studies of other quan-
tum systems, which share the characteristic of a high load impedance leading
to slow response times.

1.2 High Frequencies

The issue of limited response time inherent in current DC methods of molecular
electronics can be effectively eliminated by moving from DC to high frequency,
microwave measurements. In the microwave regime, rather than measuring
I − V curves, the quantity of measurement is the reflection coefficient Γ of a
resonant circuit attached to the molecule. By sending voltage waves towards
the circuit and reading their reflections with Γ, a change in the conductance of
the molecule can be registered as a change in the resonance of the microwave
circuit. In such a circuit, the quality factor Q is defined as

Q ≡ ω0

BW
, (2)

where ω0 is the resonance frequency and BW is the bandwidth. Therefore,

BW =
ω0

Q
, (3)

and thus for a particular resonant circuit with a fixed Q, we increase the band-
width by increasing the operating resonance frequency. In addition, the sensitiv-
ity of Γ is shown to be optimized when the characteristic input line impedance
Z0 is matched to the desired match load Z0

L, where the load is the molecule un-
der study. The following sections describe the theoretical background necessary
for microwave measurement of the reflection coefficient Γ of a high frequency
microwave circuit.

1.2.1 The Reflection Coefficient

Transmission line theory examines the propagation of voltage and current waves
along long strips of conductors. When constructing the wave solutions to
Maxwell’s equations, the general form is expressed as

V (x) = Ae−ikx + Beikx (4)
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where k is the spatial frequency of the wave, A is the amplitude of forward-
traveling waves, and B is the amplitude of backwards-traveling waves. This can
be reexpressed as

V (x) = A
(

e−ikx + Γeikx
)

(5)

where A is now an arbitrary amplitude constant and Γ ≡ B/A is the reflection
coefficient, which relates the amount of backwards-traveling waves present in
the signal of spatial frequency k.

The current in this transmission line is given by

I(x) =
A

Z0

(

e−ikx − Γeikx
)

(6)

where Z0 is the characteristic impedance of the transmission line. A position-
dependent impedance along the transmission line can now be defined as

Z(x) ≡ V (x)

I(x)
. (7)

One would now like to examine the case of a transmission line with a load ZL

attached [4]. The load ZL is considered to be purely resistive, unless otherwise
stated (the general case, of stray reactive components in the load, is considered
later). To do so, the position variable x is defined to be zero at the position of
the load, and −l at the input end of the transmission line, where l is the length
of the transmission line. By Eq. 7 the position-dependent impedance Z(x) at
the load ZL is then found to be

Z(0) = ZL =
1 + Γ

1 − Γ
Z0. (8)

Rearranging for the reflection coefficient Γ gives

Γ(ω) =
ZL(ω) − Z0

ZL(ω) + Z0

. (9)

The limiting values of the reflection coefficient can be extracted from Eq. 9.
The reflection coefficient is maximized (|Γ| = 1) in the two cases ZL = 0 and
ZL = ∞. It is minimized (|Γ| = 0) when ZL = Z0. ZL is then said to be
matched to Z0, and no reflections happen at the line-load interface.

Figure 3 shows the magnitude and phase of the reflection coefficient Γ. There
is one point of note, where ZL = Z0 and the load is matched. Here, both the
magnitude and phase of Γ are undergoing maximum change with respect to the
load. Note that the rest of this report will plot only the magnitude of Γ for
clarity and brevity; the phase could just as well be used. Thus to maximize
the sensitivity of the measurement, where sensitivity is defined as ∂Γ\∂ZL, the
load ZL must be matched to the input line. We now desire to know the method
necessary to achieve, for an arbitrary load Z0

L (the molecule or other quantum
system), the matched condition.
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Figure 3: The reflection coefficient Γ plotted for real loads ZL and Z0 = 50 Ω.
Left: Magnitude of the reflection coefficient |Γ|. Right: Phase of the reflection
coefficient Arg(Γ).

ω

Z0 ZM ZL

Figure 4: The generalized matching problem: A transmission line of character-
istic impedance Z0 must be matched to a load ZL using an impedance ZM .

1.2.2 The Matching Problem

The general problem of matching an impedance ZL to a line impedance Z0,
shown in Fig. 4, is in theory relatively simple. The first condition to obtain a
match is that at some frequency ω0, the electrical length of ZM is such that
reflected waves experience destructive interference. Thus if ZM has a physical
length lM ,

β0lM =
π

2
(10)

where
β0 =

ω0

vp
(11)

and vp is the electromagnetic velocity of propagation in ZM . Thus ZM is termed
a quarter-wave transformer.

To execute the match, the input impedance of a transmission line with elec-
trical length π/2 and characteristic impedance ZM with load ZL attached is
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equated to Z0. This gives the second matching condition

Z0 = ZM
ZL + ıZM tan β0lM
ZM + ıZL tan β0lM

. (12)

The first condition sends the tangent terms to infinity; in this limit, we obtain

ZM =
√

Z0ZL. (13)

That is, the matching impedance ZM is the geometric mean of the load and line
impedances.

In theory, then, the problem is solved. Take the desired ZL, find the right
ZM , and a beautiful readings with high bandwidth and high sensitivity will
result. Of course, science is never this simple, and here it is no different. The
challenge is to design, construct, and realize an appropriately large ZM for the
high impedances of molecules and other quantum systems, and to do so while
obtaining high bandwidth to enable fast measurements.

1.3 Goals of this Project

This project seeks to investigate different methods of fabricating impedance
matching circuits. The goal is to perform measurements on two different room
temperature PC Board impedance transformers, lumped element and distributed
element circuits, and determine parameters that limit their high bandwidth,
high frequency operation. Measurements investigating performance improve-
ment at low temperatures are also performed. In addition, this project lays
the groundwork for small-scale, low-temperature and low-loss impedance trans-
formers with the design of a mask for optical or electron beam lithography, for
the use of silicon chip-based transformers.

2 Lumped Element Transformers

The goal of the impedance matching problem is to fulfill two parameters: match-
ing to a load Z0

L at a frequency ω0. Thus the simplest solution will contain two
degrees of freedom. This is satisfied by the most basic impedance transformer,
the LC circuit. This section will describe the operation and characteristics of
this circuit, as well as its experimental implementation and subsequent results
obtained.

2.1 Theory

2.1.1 Design Equations

The lumped element impedance transformer is shown in Fig. 5. The impedance
of the LC circuit is defined by the parallel combination of the load Z0

L and the

9



ω

LZ0

C ZL

Figure 5: The lumped element impedance transformer: a voltage source at
frequency ω is connected via a transmission line of characteristic impedance Z0

to an inductance L and capacitance C, which match to the load Z0
L.

capacitance C, in series with the inductance L and the transmission line. Again,
Z0

L is considered to be purely resistive. The input impedance is thus written as

Zin = ıωL +

(

ıωC +
1

Z0
L

)−1

. (14)

Utilizing the match condition
Zin = Z0, (15)

and the resonance condition,

ω0 =
1√
LC

, (16)

we fix the two degrees of freedom and can derive equations for the required
inductance and capacitance in terms of the desired resonance frequency and
matched load. These are given by

L =

√

Z0

L

Z0

− 1

2

ω0Z0
L

(17)

C =
Z0

L

ω0

√

Z0

L

Z0

− 1

2

. (18)

The circuit parameters are now completely determined.
Figure 6 shows plots of the design equations versus the matched load Z0

L.
These demonstrate the behavior that will govern our choices of circuit compo-
nents. To match to higher loads, higher inductances and lower capacitances are
required. Both the inductance and capacitance decrease with higher operating
frequency. Later it will be shown how this behavior imposes experimental limits.
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Figure 6: Left: Inductance L as a function of matched load Z0
L. Right: Capaci-

tance C as a function of matched load Z0
L. In both: ω0={black=1 GHz, red=2

GHz, blue=3 GHz}.

2.1.2 Reflection Coefficient

The measured quantity of the matching circuit and load will be the reflection co-
efficient Γ. Equation (9), the definition of Γ, allows us to calculate the reflection
coefficient for the lumped element matching circuit with load as

Γ =
ıωL +

(

ıωC + 1

ZL

)−1

− Z0

ıωL +
(

ıωC + 1

ZL

)−1

+ Z0

(19)

Figure 7 illustrates the frequency dependence of the reflection coefficient for
loads ZL below and above the matched load Z0

L, for a 10 kΩ match at 1 GHz. In
the below match case, as the load decreases, the resonance broadens and moves
towards lower frequencies, eventually disappearing. In the above match case,
as the load increases, the resonance decreases towards the open circuit limit of
no resonance. By attaching variable loads to experimental realizations of the
lumped element transformer, we can thus test them for this matching behavior
and confirm proper design.

To maximize measurement speed in the final measurement system, it is pos-
sible to take readings at a single frequency, rather than frequency spectra. One
needs only to ensure that there is appropriate sensitivity to the load at the
measurement frequency, i.e. that ∂Γ\∂ZL is appropriately large around Z0

L, the
matched load. Figure 8 demonstrates this behavior for this lumped element
circuit. Decreasing and increasing the frequency off-match have a similar effect
of sharply decreasing sensitivity around the matched load.
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Figure 7: Reflection coefficient magnitude, |Γ|, versus frequency ν for loads
around match. The matched load Z0

L is 10 kΩ. Left Panel: Loads below match.
In kΩ: black=.5, red=1, blue=2, green=5, orange=10. Right Panel: Loads
above match. In kΩ: black=10, red=20, blue=50, green=100.

2.1.3 Quality Factor

The quality factor of this circuit is derived from the definition of the quality
factor as

Q ≡ ω0

EnergyStored

EnergyLostPerCycle
(20)

Using the equivalence of the magnetic and electric energies at resonance and
considering the energy stored in a capacitor and the loss mechanism of the
resistive load, one obtains

Q = ω0ZLC (21)

The resonance condition then gives

Q =
ZL
√

L
C

. (22)

Transmission line theory says that the denominator of Eq. (22) is the charac-
teristic impedance of a transmission line with an inductance and capacitance
per unit length of L and C, respectively. Thus we identify this denominator as
the characteristic impedance of the impedance transformer. From the general
matching problem considered in the Introduction, this is ZM . Eq. (13) then
gives

Q =

√

ZL

Z0

. (23)

This elegant result, particular to the lumped element case, will prove to be
useful in understanding the relationship between quality factors of impedance
transformers and their possible matched loads.
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Figure 8: Reflection coefficient magnitude, |Γ|, versus load ZL for frequencies
around resonance. The matched load Z0

L is 10 kΩ. Left Panel: Frequencies
below resonance. In GHz: black=.5, red=.75, blue=1. Right Panel: Frequencies
above resonance. In GHz: black=1, red=1.25, blue=1.5.

L R L

Figure 9: The model for resistive losses in the lumped element transformer
consists of this substitution in the original, ideal design.

2.1.4 Internal Losses

In real circuits, internal losses of the circuit components and cabling play a
non-negligible role. In the case of the lumped element impedance transformer,
these losses can be modeled by the addition of a resistance R in series with the
inductor, as illustrated in Fig. 9.

Figure 10 demonstrates the effect of internal losses on the reflection coeffi-
cient. In the frequency domain, losses push the resonance into the above-match
regime. In the load domain, the match is also steadily worsened and sensitivity
is lost around the desired match load of 10 kΩ.

Since Eq. (23) relates the impedance transformation ratio to the Q of the
circuit, it is important to understand the effect of losses on the Q since these
will alter both possible matched loads and bandwidths. The simple cases of
fully parallel or series LRC circuits are easily treated by considering the form
of the parallel Q given in Eq. (21) and its series version

Qseries =
1

ω0ZLC
. (24)

By considering the total resistance of either a parallel LRC with parallel loss
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Figure 10: Left Panel: Reflection coefficient magnitude |Γ| versus frequency ν.
Nominal match: 10 kΩ at 1GHz. Right Panel: Reflection coefficient magnitude,
|Γ| versus load ZL. Nominal match: 10 kΩ at 1GHz. Both panels have a series
loss resistance R in Ω given by: black=1, red=20, blue=50.

or a series LRC with series loss, it is seen that in both cases,

1

Qtot

=
1

Qext

+
1

Qint

, (25)

where Qtot is the total Q, Qext is the external Q given by the desired load, and
Qint is the internal Q arising from the combination of the LC and the internal
loss component R. Thus, the Q’s add in parallel for these simple cases.

Equation 25 provides an important perspective on the resonance process.
For a fixed Qext,

Qint ≫ Qext ⇒ Qtot ≈ Qext (26)

Qint ≪ Qext ⇒ Qtot ≈ Qint. (27)

Thus it is shown that higher internal quality factors are desirable for a good
measurement of the external Q.

For the case of the lumped element impedance transformer, the match load
Z0

L adds in parallel to the transformer but the internal loss R adds in series. To
determine the total dissipative contribution to the circuit impedance, we find
the real part of the input impedance of the lossy transformer, given by

Re[Zin] = R +
ZL

1 + (ωZLC)2
. (28)

This is the equivalent series resistance for the lumped element transformer. By
fixing the impedance at the resonant frequency ω0 the Q may now be written
as in the series case as

1

Qtot

= ω0CR +
ω0ZLC

1 + (ω0ZLC)2
. (29)
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Figure 11: An example of the lumped element transformer on a PC Board. From
left to right, note the SMA connector with compensating structure, microstrip
line, SMD inductor, and capacitive pad.

Rewriting using the parallel and series Q one thus obtains

1

Qtot

=
1

Qint

+
Qext

1 + Q2
ext

, (30)

where

Qint ≡
1

ω0RC
(31)

Qext ≡ ω0ZLC. (32)

In the case of large external Q, or by Eq. (23) large matched loads, as this
project is interested in, Eq. (30) reduces to

1

Qtot

≈ 1

Qint

+
1

Qext

, (33)

and thus in the regime of interest the total Q of the lumped element transformer
circuit is a parallel combination of the internal and external Q’s. Thus the same
conditions for a good measurement of Qext apply as in the two simple LRC
cases. By Eq. (23), we therefore require high internal Q’s for higher loads, and
thus small losses in the circuit components. The condition on small losses is
given by Eq. (28), which shows that for the external dissipation to dominate,

R ≪ ZL

1 + (ω0ZLC)2
. (34)

2.2 Experiment

Experimental realizations of the lumped element impedance transformers for
differing parameter values have been fabricated and tested. Their design, results
and final considerations are elaborated upon below.

2.2.1 Design

The first tests of lumped element impedance transformers were performed on
PC Board (PCB) consisting of 1.5 mm thick FR4 with 35 µm thick copper
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Figure 12: The microstrip transmission line cross section, with center conductor
width W , substrate height H , substrate relative dielectric constant ǫr, and center
conductor thickness T .

metallization. Figure 11 displays the design. A coaxial cable is attached via an
SMA connector to a 50 Ω matched microstrip line. Microstrip is a transmission
line geometry defined by a strip of conductor of width W suspended at height H
over a ground plane (Fig. 12). They are easy to fabricate on PCBs and exhibit
convenient scaling on the PCB scale. The 50 Ω microstrip match is achieved
by calculating the effective dielectric constant for the microstrip and the width
for the chosen impedance of 50 Ω [4, 2]. Different transmission line geometries
will be discussed further in the distributed element section. To reduce stray
reactive components at the connector transition from SMA cable to microstrip,
a compensating structure is used as recommended by the manufacturer [].

A pad lies at the end of the line for the soldering of the surface mount device,
or SMD, inductor. Because high matched loads require low capacitances, it is
unnecessary to attach an SMD capacitor to the circuit. Instead, the capacitance
of the inductor soldering pad is used as the matching circuit C. To calculate
the capacitance of this pad, Maxwell, a finite-element analysis program, was
used. Maxwell allows the calculation of static electromagnetic fields in 2D and
3D geometries and capacitance matrix calculation. The pad capacitance can
then be tailored to the particular requirement of a given load, frequency, and
inductor.

For testing the matching circuit with a variable load impedance, a poten-
tiometer with an appropriate resistance range for the chosen matched load Z0

L

is soldered to the other end of the capacitive pad, as shown in Fig. 13. This
potentiometer modifies the properties of the circuit, as will be discussed below.

To measure the DC resistance of the circuit and potentiometer, a bias tee is
used as shown in Fig. 13. A bias tee is a three-terminal device with an RF input
capacitively coupled to the output. The output is inductively coupled to the DC
port. Thus it is possible to send RF signals to the output with isolation from
DC signal while reading or sending DC signals through the DC port that are
shielded from RF frequencies. A right-angle bend connector with an SMA-BNC
adapter allows connection to an ohmmeter.

2.2.2 Fabrication

The PC Board circuits fabricated for all experiments in this report were designed
in AutoCAD. To increase resolution, a scaled up printout is made of the design
and a Repro machine is used to scale the print back down for exposure onto
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Figure 13: The measurement setup for the lumped element PC Board trans-
former. Note the potentiometer with trimmer and the bias tee. Also note the
small size of the capacitive pad, with capacitance .13 pF for a match to 40 kΩ.

a negative film. The exposed negative is then developed onto a positive film,
which is washed and dried. Care must be taken to obtain a proper exposure;
typically, exposing slightly below the estimated value produces darker prints.
A five minute UV exposure is performed with the positive film on the fully
metalized PCB. The exposed PCB is then developed in solution, and wet-etched
for ten minutes in a mixing chamber. After washing with acetone, the etched
PCB is cut with a table saw according to design criteria. The ends are filed and
the SMA connections are soldered onto the compensation structures.

2.2.3 Results

The following section discusses experimental results for an impedance trans-
former design with a nominal match of Z0

L=5 kΩ operating at ν0=1 GHz. This
choice of match load for the fixed resonance frequency was based on an avail-
able SMD inductance value of 82 nH, whose choice will be explained later. The
required capacitance for these parameters is .3 pF. As a zeroth order design cal-
culation, a parallel-plate capacitor assumption was made to yield the dimensions
for the capacitive pad.

Figure 14 shows a spectrum of an impedance transformer with a nominal
match of 5 kΩ at 1 GHz in an open-circuit configuration. The first observation
is that the frequency is shifted by nearly a factor of two to 600 MHz. To
understand why this shift occurs, an electrostatic simulation was performed in
Maxwell to determine a more accurate value for the pad capacitance. It yielded
a pad-to-ground plane capacitance of .598 pF, about twice the approximated
capacitance. Assuming the nominal SMD inductor value of 82 nH, this brings
the resonance frequency to 700 MHz, explaining most of the shift.
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Figure 14: Experimental data on a lumped element impedance transformer with
nominal match to Z0

L=5 kΩ at ν0=1 GHz, open-circuited.
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Figure 15: Experimental data on a nominal 5 kΩ match at 1 GHz with 20 kΩ
potentiometer attached. Qualitatively, the correct behavior is observed. Actual
match occurs at 1.66 kΩ. Load is varied: left=below match, right=above match.

A more accurate determination can be obtained by fitting the known analytic
expression for the input impedance of the open-circuited transformer to the data.
Because a resonance is observed even in the absence of an external load, the
transformer must be matching to internal losses. The fit is thus performed to
an open-circuited transformer that includes the loss component R previously
discussed. The open-circuit fit is shown in the left panel of Fig. 16. This
fit yields Leff=120 nH, Ceff=.585 pF and R=15 Ω. The loss component is a
reasonable number for an internal resistance. The capacitance remains similar
to the calculated Maxwell value, but the effective inductance increases by 50%,
indicating that this fit has possibly attributed all stray reactive components to
the inductance. These values may then be used for more accurate modeling of
impedance transformers with loads attached.

The quality factor of the open-circuited transformer is obtained with a
Lorentzian fit in Mathematica and is calculated to be Qtot = 7.9. The open-
circuited impedance transformer is equivalent to one with ZL → ∞; by Eq. (21)
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Figure 16: Analytic model fits to experimental data on lumped element reso-
nances. Left: Open circuit. Center: On-match at 1.66 kΩ. Right: Off-match at
4 kΩ. All plots: black = data, red = analytic fit.

ZL CL LLRL

Figure 17: A schematic model of the reactive components in the potentiometer
due to its construction characteristics. Note that in actuality the inductance is
in series with the resistance, as in the analytic model discussed.

Qext → ∞. Thus Eq. (27) places this measurement in the limit where Qtot ≈
Qint and therefore Qint ≈ 8.

Figure 15 shows experimental results for the same impedance transformer,
now attached to a 20 kΩ potentiometer. The load is varied between ZL=125 Ω
and ZL=18.7 kΩ, with actual match occurring at Z0

L=1.66 kΩ. The qualitative
behavior conforms closely to that predicted by the theory. Quantitatively, how-
ever, a lower resonance frequency than for the open load is observed as well as
a lower match load than expected.

These secondary shifts have been attributed to the potentiometer. The vari-
able load behavior it possesses is achieved by wrapping a long resistive wire into
a coil and contacting this resistive coil at a fixed input contact and an output
contact that lies at a varying position along its length. Varying this position
varies the DC resistance. The solenoidal form of the wire, however, means it
automatically possesses a large inductance. One may also conjecture that since
the length of the solenoid is varied to vary the resistance, its inductance is thus
a function of the measured DC resistance.

Fig. 17 shows a schematic of the potentiometer parasitics. Note that the fol-
lowing analytic model has the load in series with the potentiometer inductance.
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Inductances, L [nH] 56 68 82 220 1130
Match Load at 1 GHz, Z0

L [kΩ] 2.4 3.6 5.3 38.2 1010
Capacitance for Z0

L at 1 GHz, C [pF] .45 .37 .31 .12 .0224
Typ. Qint of inductor (at 800MHz) 60 60 60 N/A N/A
Min. Self-Resonant Frequency, SRF [MHz] 1700 1550 1430 950 350

Table 1: Properties of some available SMD inductor values at an operating
frequency of 1 GHz.

The input impedance of the lossy lumped element transformer is then given by

ZinPot. = ıωL + R +

(

ıωC + ıωCL +
1

RL
+

1

ıωLL

)−1

(35)

Using the L, C, and R obtained from the open-circuit fit, this equation is fit
to the potentiometer-loaded transformer data at the match load 1.66 kΩ and
at an off-match load 4 kΩ. These are shown in the center and right panels,
respectively, of Fig. 16. The match-load fit yields LL=415 nH and CL=.68 pF.
The off-match fit yields LL=2000 nH and CL=.58 pF. The effective potentiome-
ter capacitance is seen to be comparable to the original pad capacitance. The
effective potentiometer inductance is large, and increases with increased load,
as hypothesized. Thus the potentiometer strongly modifies the properties of the
impedance transformer due to its construction.

While single molecules, the ultimate matching goal, will not have strays as
large as potentiometers, the break junctions used to contact the molecules may
carry stray reactive components due to the length of nanowire required and the
nanogap formed by the leads. Hence while this analysis yields values not in line
with what is ultimately expected, it is useful as a methodology to extract stray
reactive components from loads of unknown character.

2.2.4 Limitations of Lumped Element Transformers on PC Boards

The limitations on lumped element circuits are determined by how large an
inductance and how small a capacitance can be realized, and subsequently by
the loss mechanisms in these components.

SMD inductors have parasitic impedances, which include dissipative and
reactive components. Thus they exhibit not only inductance but also stray
resistance and capacitance. Therefore the SMD inductors themselves have a
resonant behavior. This leads to two crucial limits. The first is the internal Q
of the inductor, which places an upper limit on the internal Q of the transformer.
Table 1 displays, for several available SMD inductance values at an operating
frequency of 1 GHz, the supported match load Z0

L, required capacitance C for
such a match, internal Q at 800 MHz and self-resonant frequency. For Z0

L

approaching the kΩ regime, the internal Q’s of the inductors reach 60. By
Eq. (26) Qext is then limited to be much smaller than 60. If Qext must be ten
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times less than Qint, then by Eq. (26) the matched load Z0
L < 2 kΩ. This is

dramatically below the matched loads of interest.
Below the resonance of the inductors, they will exhibit inductive impedance

(i.e. ıωL) but above it the impedance begins to decrease with frequency, ex-
hibiting capacitive impedance (i.e. 1/ıωC). Transformer operation is therefore
limited to be below this self-resonant frequency (SRF). Table 1 shows that for
an operating frequency of 1 GHz at high matched loads of 1 MΩ, the SRF for
available SMD inductors is in the low hundreds of megahertz. For Q’s on the
order of 10, as observed in these PCB circuits, this limits bandwidth to the
dozens of megahertz, already too low to provide the high frequency advantages
discussed in the introduction.

Since SMD capacitors are not used, the lower limit on capacitance is given
by the size of the capacitive pad. In the PC Board case, this minimum is
defined by the size of the inductor connection, which must be soldered to the
pad, plus extra space to make the soldering physically feasible. This limit has
been calculated with Maxwell to be approximately .13 pF. At this limit of PCB
capacitance, Z0

L ≈40 kΩ and the SRF<1 GHz. In the range of measured Qtot’s,
the bandwidth is then limited to a hundred MHz or less.

In sum, the capacitive pad size limit sets an upper limit on the match load
Z0

L, the necessary inductor at this limit restrains Qtot and the maximum oper-
ating frequency, by which the bandwidth is then also limited. PC Board lumped
element matching circuits therefore will not be able to satisfy the requirements
for high frequency molecular electronics, but have provided a useful testbed
environment.

3 Distributed Element Circuits

As an alternative to discrete elements and their issues with internal losses,
impedance transformers may be fabricated with variable lengths of transmis-
sion line. Such circuits are known as continuous or distributed element circuits.
Their advantage is the avoidance of large loss and reactive components from sur-
face mount devices and the enabling of high-frequency operation. This section
discusses theoretical and experimental results on the use of these distributed
element impedance transformers.

3.1 Theory

3.1.1 Single Stub Tuners: Lossless Lines

The single stub tuner is a design that takes advantage of the length-dependent
input impedance of a transmission line. The strategy for the distributed element
matching circuit is to select a length of transmission line a distance d from the
attached load ZL such that the input admittance is the characteristic admittance
Y0 ≡ 1/Z0 plus an imaginary part, the susceptance B. A stub, or transmission
line of length l, is then chosen to be attached in parallel to the original line at
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ω

dZ0

l ZL

Figure 18: A single stub tuner. All transmission lines have characteristic
impedance Z0. The length d of transmission line is chosen along with the
length l of the stub to cause the input impedance at the junction to be Z0,
the matching condition.

the point d. Since admittances add in parallel, the stub length l can be chosen
to cancel the susceptance B, leaving the matched impedance Z0.

The length-dependent input impedance of an ideal transmission line is given
from basic transmission line theory as

Zin (l) = Z0

ZL + ıZ0 tanβl

Z0 + ıZL tanβl
, (36)

where Z0 is the characteristic impedance of the transmission line, ZL is the
attached arbitrary load impedance, l is the line length, and β is the spatial
frequency, given by

β =
ω

v
, (37)

where ω is the operating frequency and v is the propagation velocity in the
transmission line, defined from electrodynamics as

v =
1√

µ0ε0εeff

. (38)

εeff is the effective dielectric constant, defined by the particular transmission
line geometry; this is discussed in a forthcoming section.

With a load ZL attached to a transmission line of length d, as in Fig. 18, d
is now chosen such that the admittance of the loaded input branch is Y0 + ıB,
where Y0 ≡ 1/Z0. This condition fixes d.

A stub, or piece of transmission line of length l, is then attached in parallel
at the point d, see Fig. 18. This stub is left open-circuited, such that its input
impedance is

Zstub = −ıZ0 cotβl. (39)

The stub length l can then be chosen such that the purely susceptive admittance
of the stub precisely cancels the susceptance B of the original line of length d.
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The input impedance at the junction of the line and stub will then be only
the characteristic impedance Z0, leading to a matched condition. A detailed
derivation is given in [4].

For the case of a purely resistive load, the distance from the load d and the
stub length l are given by

d =
v

ω0

arctan

√

Z0
L

Z0

(40)

l =
λ0

2
− v

ω0

arctan
Z0

L − Z0
√

Z0
LZ0

, (41)

where Z0
L is the desired matched load and λ0/2 is the half-wavelength at the

resonance ω0 given by
λ0

2
= π

v

ω0

. (42)

In the limit Z0
L ≫ Z0, these equations show that d grows and l decreases

until both approach λ0/4. This is due to the resonant nature of the circuit:
the line length d is chosen slightly below the resonance while the stub length
l is chosen slightly above, leading one to exhibit a capacitive impedance (the
line input impedance 1/(Z0 + ıB)) and the other an inductive impedance (the
stub input impedance ı/B). One can thence understand the single stub tuner
at match as a resonator where one branch represents the inductor and the other
a capacitor.

Both the line and stub length are inversely proportional to the chosen op-
erating frequency. Thus for higher operating resonant frequencies we require
shorter branches. However, the difference in length between the line and stub
are also inversely proportional to frequency, as well as decreasing with higher
chosen load. Therefore real-world designs will have to involve fabrication tech-
niques with high resolution and reproducibility. Errors in line or stub length
will lead to stray reactive components in the circuit.

3.1.2 Impedance and Reflection Coefficient

An analytic approach to analysis of the single stub tuner is possible by con-
sidering a parallel combination of transmission line input impedances. Writing
down the input impedance of a transmission line of length d attached to a load
ZL in parallel with an open-circuit stub of length l, one obtains

Zin = Z0

(

Z0 + ıZL tan βd

ZL + ıZ0 tan βd
+ ı tan βl

)−1

. (43)

Eq. (9) now allows the calculation of the reflection coefficient.
Figure 19 shows the reflection coefficient |Γ| around the chosen operating

frequency ν0=2 GHz for the single stub tuner impedance transformer, for a
matched load Z0

L=10 kΩ. The behavior is similar to the lumped element case:
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Figure 19: Analytic reflection coefficient of the Z0
L = 10 10 kΩ, ν0 = 2

GHz matching circuit. Left: loads below match; ZL = {1.25, 2.5, 5, 10} kΩ,
match=green. Right: loads above match; ZL = {10, 20, 40} kΩ, match=black.

for loads below match, the reflection coefficient decreases until the resonance
disappears (although at increasing frequency), while for loads above match the
reflection coefficient increases towards the infinite-load limit of no resonance.
The left panel of Fig. 20 shows the reflection coefficient for the same trans-
former, plotted against load ZL. As in the lumped element case, moving off the
operating frequency diminishes sensitivity around the matched load Z0

L=10 kΩ.
The right panel of Fig. 20 shows the reflection coefficient plotted over a wider

frequency range. Higher harmonics, a special property of distributed element
transformers, are now visible. Altering the load ZL now affects all harmonics,
and thus the entire frequency range. In principle, transformer operation could
happen at any one of the matched harmonics; in practice, frequency-dependent
losses, which are typically higher at higher frequencies, prevent higher-harmonic
operation. This will be discussed further in the proceeding section.

3.1.3 Lossy Transmission Lines

Real transmission lines are not ideal transmitters of electrical energy but have
a number of loss mechanisms associated with them. These include losses in
the conducting material, such as skin depth, scattering of electrons by lattice
vibrations (phonons), impurities, defects, and surface roughness, as well as losses
in the surrounding dielectric. It is possible to consider lossy transmission lines
by applying to the distributed element circuit impedance equations the algebraic
mapping

ı tan βl → tanhγl (44)

where γ is the lossy propagation constant defined as

γ ≡ α + ıβ (45)
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Figure 20: Magnitude of the reflection coefficient |Γ| for the ideal distributed
element impedance transformer, matched to Z0

L = 10 kΩ at ν0 = 2 GHz. Left:
versus load ZL, for frequencies ν = {ν0 (red), ν0 + .05 GHz (blue), ν0 − .05
GHz (black)}. Right: versus frequency ν, over a wider frequency range showing
higher harmonics, for ZL = {Z0

L (red), 4Z0
L (blue), Z0

L/4 (black)}.

with β the lossless propagation constant and α the lossy attenuation constant.
In the case α=0, the original lossless behavior is recovered [4].

The left panel of Fig. 21 shows the effect of a constant, frequency-independent
α on the reflection coefficient |Γ| in the frequency domain of a transformer
matched to Z0

L=10 kΩ at ω0=2 GHz. The effect is to increase |Γ| and reduce
the match. In the same figure, the right panel shows the effect of α, again con-
stant and frequency-independent, on |Γ| in the load domain. The sensitivity is
rapidly diminished as α increases. This demonstrates that a realized distributed
element impedance transformer must have a small α for good sensitivity.

The attenuation constant α, as mentioned earlier, has many physical mecha-
nisms associated with it. Design equations describing the functional dependence
of these loss mechanisms on parameters such as the geometry of the transmis-
sion line, its physical characteristics, and its operating parameters have been
developed. These are available in [2, 6]. In general, these loss mechanisms
are frequency dependent and increase with increasing frequency. These will be
described further in the experimental section.

3.2 Experiment

3.2.1 Design

Figure 22 shows a realized PC Board distributed element impedance trans-
former. The SMA connector at left is connected to the PC Board via its appro-
priate manufacturer-supplied compensation structure to minimize stray reactive
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Figure 21: Effect of α, the attenuation constant of lossy transmission lines, on
the reflection coefficient |Γ| of a transformer matched to Z0

L=10 kΩ at ν0=2
GHz. Left: versus frequency ν, for α={black=0, red=.1, blue=.25, green=.5,
yellow=1}. Right: versus load ZL, at ν = ν0 = 2 GHz, for α={black=0,
red=.05, blue=.1, green=.25, yellow=.5}.

components. A small line-in leads to the junction. The stub and line lengths
are begun from the bottom- and right-most ends of the junction, respectively.
The stub terminates in an open, as required by the theoretical design. In the
pictured setup, the line is terminated by a potentiometer; this potentiometer
may also be left out to test the transformer with an open-circuited load.

Note that the input line to the potentiometer is soldered at a point slightly
inwards from the end of the line, lending it an effective electrical length shorter
than the intended design. This problem was fixed for the actual measurements
by shortening the input line and soldering it as close as possible to the edge of the
transformer. This process also minimizes the stray capacitance and inductance
due to the connecting wire.

The system for measuring the DC resistance of the system is the same de-
scribed as in the lumped element section: to wit, a bias tee with right-angle SMA
connection to an SMA-BNC converter for an ohmmeter readout (see Fig. 13).

3.2.2 Results

The following results are reported for a distributed element impedance trans-
former with nominal match to Z0

L = 1 kΩ at ν0 = 2 GHz. Figure 23 shows
experimental data for this transformer in an open-circuited configuration, i.e.
ZL → ∞. A surprisingly good match is observed very close to the designed
operating frequency of 2 GHz. This indicates that the transformer is matching
strongly to internal losses. The quality factor of this open-circuited resonance
is determined from a Lorentzian fit in Mathematica to be Qtot = 34. In the
open-circuit regime Eqs. (21) and (27) thus give Qint = 34.
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Figure 22: An example of a distributed element PCB transformer. Left to
right: SMA connector with compensating structure, stub, and microstrip line-
in attached to a potentiometer acting as a variable load impedance ZL.

Figure 24 shows the open-circuited distributed element impedance trans-
former reflection coefficient data overlaid with the analytical model in Eq. (43),
transformed to the lossy transmission line case in accordance with Eq. (44).
Here, two formulas for contributions to the loss coefficient α, given in [6], are
used:

αdiel = 20
π

log 10

ǫeff − 1

ǫr − 1

tan δ

λ
, (46)

where αdiel is the contribution to α due to dielectric losses, ǫr is the dielectric
constant relative to vacuum of the substrate, ǫeff is the effective relative dielec-
tric constant of the transmission line geometry, tan δ is the loss tangent of the
substrate, and λ is the wavelength of the probing wave; and

αcond = 10 RS

(

8d
W − W

4d

) (

1 + d
W + d

W
1

π log 2 d
t

)

π log 10 d Z0 exp Z0

60

, (47)

where αcond is the contribution to α due to conductive losses, d is the substrate
thickness, W is the center conductor width in the microstrip transmission line
geometry, t is the thickness of the metallization of the center conductor, Z0 =
50Ω is the standard microwave frequency line impedance, and RS is the surface
resistivity given by

RS =

√

ωµ

2σ
, (48)

with ω = 2πν the operating angular frequency, µ the permeability of the mate-
rial taken to be µ0 the vacuum permeability, and σ the bulk conductivity. The
total modeled α is then given by

αtot = αdiel + αcond. (49)
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Figure 23: Experimental data for a distributed element impedance transformer
with nominal match to Z0

L = 1 kΩ at ν0 = 2 GHz, open-circuited. Note the
good match to internal losses.

The left panel of Fig. 24 shows the fundamental harmonic of the impedance
transformer, overlaid with the theoretical fit. The parameters modified are the
relative dielectric constant of the substrate, ǫrFR4 = 4.65, with a corresponding
ǫeff = 3.53, and its loss tangent tan δ = .003. These are modified from the
manufacturer-supplied reference values ǫrFR4 = 4.65 and tan δFR4 = .015. The
good fit with different material parameters highlights the unreliability of FR4 as
a substrate for microwave applications due to variations in parameter values [2].
A move to a substrate with favorable parameter values (i.e. lower loss tangent
tan δ) and less variation in parameters from sample to sample would improve
experimental conditions.

The right panel of Fig. 24 shows reflection coefficient data from the open-
circuited Z0

L = 1 kΩ at ν0 = 2 GHz distributed element impedance transformer,
plotted through 10 GHz. The higher harmonics in both the data and the an-
alytical fit are visible. Clearly, there are far more losses experienced in the
experiment which are not taken into account by the two loss sources described
by αdiel and αcond. These would include losses and stray reactive components
due to the measurement setup, such as the SMA-PCB connector. Thus the an-
alytical fit can only be trusted in a small frequency range over which the losses
are adequately described by the chosen formulas for α. Ideally, however, one
may wish to perform a measurement of the losses in the transmission line for
accurate modeling and characterization.

4 Half-Wavelength Resonators

Half-wavelength resonators are resonant structures based on a transmission line
design. Their main usefulness from the perspective of this report is an analyti-
cally determined quality factor Q in terms of the losses inside the transmission
line. This allows the measurement of internal losses in a chosen transmission
line and thus theoretical modeling of results from distributed element impedance
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Figure 24: Experimental data overlaid with the lossy theoretical model of |Γ|.
Blue=data, red=model. Left: The fit to the fundamental harmonic, ν0=2 GHz.
Right: The same fit, plotted until 10 GHz.

transformers. In addition they can be used to investigate the temperature de-
pendence of these losses. The theory behind these resonators, restricted in this
report to open-circuited half-wavelength resonators, and results from measure-
ments performed on them in the course of this project are reported below.

4.1 Theory

4.1.1 Input Impedance and Quality Factor

An analytical expression for quality factor Q of an open-circuited, half-wavelength
resonator is obtained by considering its input impedance about the resonance
and mapping this to the input impedance about resonance of a lumped element
parallel LRC circuit.

To begin, the input impedance of a parallel LRC circuit is given as

ZLRC‖ = (
1

R
+

1

ıωL
+ ıωC)−1. (50)

About the resonance ω0, we write

ω = ω0 + ∆ω. (51)

For ∆ω ≪ ω0, Eq. (50) may be approximated as

ZLRC‖ ≈ R

1 + ı2Q∆ω
ω0

(52)

where Q = ω0RC as derived for the parallel LRC case.
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Figure 25: Schematic of a measurement setup for an open-circuited half-
wavelength resonator of length l.

Next, we write the input impedance of an open-circuited half-wavelength
lossy transmission line,

Zλ0/2 = Z0 coth(γl) (53)

where γ is defined as in Eq. (45) and l is the length λ0/2. Using the approxima-
tion in Eq. (51) and assuming small losses, we approximate the half-wavelength
resonator input impedance as

Zλ0/2 ≈ Z0

αl + ıπ ∆ω
ω0

. (54)

A detailed derivation of both the above approximations is given in [4].
The identical algebraic form of the near-resonance input impedances given

above allows a mapping of the half-wavelength resonator parameters to effective
LRC values. These are given by

R =
Z0

αl
(55)

C =
π

2ω0Z0

(56)

L =
2Z0

πω0

(57)

Thus

Q = ω0RC =
β0

2α
, (58)

where β0 is given in Eq. (37). Since Q is a measurable of the resonator system,
Eq. (58) allows calculation of α, and thus quantification of the degree of loss in
the chosen transmission line design. Further details are available in [7].
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Figure 26: Schematic of the measurement setup with the open-circuited half-
wavelength resonator mapped to lumped elements.

L R RLC

Cκ

ext. load

= Gex

ext. load

Figure 27: The effective external load conductance Gext presented by the cou-
pling capacitor Cκ and load impedance RL=50 Ω.

4.1.2 Coupling and External Q

Physically realized half-wavelength resonators cannot be perfectly isolated sys-
tems because, as a matter of design, a method of coupling energy into the res-
onator is required. A schematic of the measurement setup is shown in Fig. 25.
Here, a signal at frequency ω travels through a transmission line of characteristic
impedance Z0 which is coupled through the capacitance Cκ to the resonator of
length l. In principle, this is all that is required, and the reflection coefficient Γ
could be measured. However, since the resonator effectively filters out frequen-
cies far from the resonance, the transmission of a two-ported resonator contains
less noise than the reflection of a one-ported resonator. Therefore, the transmis-
sion T is the preferred measurable for this system. The circuit thus continues
after the resonator of length l to another coupling capacitor Cκ, coupled to a
transmission line of characteristic impedance Z0 which is matched to RL=50 Ω
by the measurement system (i.e. a network analyzer). The same setup is shown
in Fig. 26 with the resonator mapped to a lumped element parallel LRC circuit.

The external coupling presents new dissipative elements to the resonator
system. Therefore the Q measured will be not only due to the internal Q of the
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Figure 28: The effective external load conductance Gext present in both input
and output branches of the measurement system.

resonator, Qint, but also to the dissipation due to external loading, Qext. Since
Qint is unknown and the measured quantity is Qtot, Eq. (25) and 27 require
an appropriate choice of Qext for a measurement dominated by the quantity of
interest, Qint. We thus require a calculation of Qext and its dependencies on
circuit parameters; in particular, the only free parameter of the external loading
is the capacitance, Cκ.

The effective external load conductance Gext is schematically shown in Fig. 27.
The effective resistive dissipation due to Gext can be calculated as

Rext =
1

Gext

=
1 + ω2C2

κR2
L

ω2C2
κRL

. (59)

This is combined in parallel with R to give the total dissipation in the circuit.
Because transmission is measured and this requires two branches, each with
load conductance Gext as shown in Fig. 28, the total dissipation is halved.
By Eq. (25), we can consider the external dissipation separately and use it to
calculate Qext, to be subsequently added to the known Qint. Since both Q’s are
due to parallel dissipative components, we use Eq. (21) to calculate the external
Q with the capacitive resonator mapping for C in Eq. (56) and finally divide by
2 for the symmetric coupling to obtain

Qext =
π

4Z0

(

1

ω2C2
κRL

+ RL

)

(60)

More details are available in [7].
With the equation for Qext as a function of Cκ, design of half-wavelength

resonators with calculable Qint’s and thus α’s is realizable. In making the choice
of what values of Cκ to use, the issue lies in ensuring that the resonator is not
too under-coupled, such that it lacks enough input energy to make the resonance
easily measurable (i.e. compared to noise), and not too over-coupled, such that
the measurement consists almost solely of Qext as in Eq. (26). In principle,
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however, Qint is not known, and thus it is necessary to construct a range of Cκ

values to ensure the possibility of a good measurement.

4.1.3 Insertion Loss

Theoretically, Qint can be calculated from the measured Qtot and the calculated
Qext based on the constructed Cκ. The coupling capacitance Cκ, however, is
known only from simulations done, for this project, in Maxwell. Experimental
realities such as variations in the etching process and in the material dielectric
constant ǫr may alter this value. Thus it is desirable to calculate Qext with
purely measured values to eliminate theoretical assumptions.

To do so, we use the insertion loss L0, a measurable of the system. Defining
the coupling coefficient g,

g ≡ Qint

Qext

=
Gext

Gint

=
R

Rext

, (61)

the insertion loss can be rewritten as

L0 =
g

g + 1
. (62)

Equations 25, 61 and 62 can be combined to obtain

Qint =
1

1 − L0

Qtot (63)

Qext =
1

L0

Qtot. (64)

The internal and external quality factors of the resonator system can then be
calculated from the insertion loss and total quality factor, both measurable
quantities.

4.2 Experiment

To gauge the losses in the PCB transmission lines and their temperature de-
pendence, PCB microstrip resonators have been fabricated and measurements
at room temperature and 77 K have been performed. The design and results
are reported below.

4.2.1 Design

Figure 29 shows the PC Board microstrip half-wavelength resonator, designed
for ν0=2 GHz, used for the following measurements. The connection is achieved
with SMA connectors with the manufacturer-provided compensation structure,
followed by a short feedline. This is coupled to the half-wavelength resonator,
a piece of microstrip with a 50 Ω designed impedance, via 1mm wide gap ca-
pacitors. The capacitance of these gaps has been calculated in Maxwell to be
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Figure 29: An example of a realized PCB half-wavelength resonator designed
for ν0=2 GHz. Note the 1mm gap capacitors.

Tmax Qtot Qext Qint α
Room ≈ 300 K .043 43.7 1016 45.7 0.86
LN2 ≈ 77 K .151 99.7 660 117.4 0.33

Table 2: Resulting data for the PCB half-wavelength resonator with 1mm gap
capacitors at room temperature and in liquid nitrogen.

48 fF, yielding Qext = 864. This is appropriately large given the internal Q’s
measured in the distributed element transformers.

For room temperature measurement, coaxial cables are attached to the net-
work analyzer and the resonator. For measurement at 77 K in liquid nitrogen
(LN2), semi-rigid cables manufactured in the laboratory are connected to the
coaxial cables and the resonator. These can be placed inside a small liquid
nitrogen dewar for cooling the device.

4.2.2 Results

Figure 30 shows the transmission magnitude |T | graphed about the fundamental
resonance for the ν0 = 2 GHz PCB half-wavelengthvresonator with 1mm wide
gap capacitors. There is a clear improvement in the quality of the resonance
between the room temperature 300 K (left panel) and liquid nitrogen 77 K (right
panel) measurements. The peak transmission is observed to more than triple
from high to low temperature.

Table 2 shows the measurement data and corresponding results for the two
measurements. The calculation of Qtot is performed via the fits-to-data shown
in Fig. 30. Qext and Qint are then calculated via Eqs. (64) and (63). Eq. (58)
is used to calculate the α at resonance.

34



1.95 2 2.05 2.1

0

.01

.02

.03

Frequency, ν [GHz]

|T
|

Room Temp. (300 K)

1.95 2 2.05 2.1

0

.01

.02

.03

Frequency, ν [GHz]

|T
|

LN2 (77 K)

Figure 30: Magnitude of the transmission |T | for a PCB half-wavelength res-
onator operating at ν0 = 2 GHz with 1mm gap capacitors for Cκ = 48 fF and
a theoretical Qext = 864. Left: room temperature ≈ 300 K. Right: Liquid
nitrogen (LN2) ≈ 77 K. Both plots: blue dots are data, red line is a Lorentzian
fit.

Qint is seen to increase by a factor of 2.6 during the temperature drop, with a
corresponding drop in the internal loss α of the same factor. This result confirms
the important temperature dependence of the losses, which allows a mechanism
by which to increase the quality factor of the transmission line resonances. This
can be used to make impedance transformers that match to higher loads Z0

L.
Thus low temperatures provide a method by which to increase matched loads,
operating frequencies and therefore also bandwidth for making fast impedance
transformers.

5 Silicon Chips

The impedance transformers analyzed in this report have been demonstrated
to contain intrinsic losses that hamper the ability to match to high loads at
high frequencies. To increase flexibility in this respect, transformers must be
fabricated for which helium-temperature cooling is possible. The microstrip
design formulas indicate that an increase in dielectric constant of the available
substrate would allow for smaller transformer dimensions. Silicon chips provide
an answer by allowing miniaturization and providing an increase over the FR4
dielectric constant of a factor of more than 2, from ǫrFR4 = 4.5 to ǫrSi = 11.9.

Silicon chips also make possible the use of superconducting materials. Super-
conducting half-wavelength resonators have been demonstrated to exhibit qual-
ity factors of order 105 [7]. The move to silicon chips thus allows for the greatest
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Figure 31: The optical mask for the silicon chip impedance transformers and
half-wavelength resonators.

flexibility in reducing internal losses in the distributed element impedance trans-
formers and in achieving the goals of high frequency molecular electronics.

5.1 Optical Mask Design

The design for the optical mask necessary for lithographic or electron beam
fabrication is show in Fig. 31. The base chip size, indicated by the intersections
of the blue dicing lines, is 2mm x 7mm. The yellow microstrip designs are
immediately seen to be designed in multiples of this base chip size. The reasons
for this and for the design of the coplanar waveguide (CPW) chips seen in red
are elucidated below.

Four matched loads Z0
L were decided upon: 103, 104, 105, and 106 Ω. These

choices allow testing of low resistances up through the quantum resistance and
resistances observed in single-molecule junctions. Operating frequencies are
chosen and described below.

A labeling system is utilized. For the impedance transformers, it consists
of transmission line type, n where Z0

L = 10nΩ, and the operating frequency ν0

in GHz. For a microstrip transformer with Z0
L=1 kΩ and ν0=2 GHz the chip

label is ”M23”. For a CPW transformer with Z0
L=10 kΩ and ν0=1.5 GHz the

chip label is ”C154”. Labeling for the half-wavelength resonators has the same
first two terms plus a Q followed by the order of Qext. A CPW resonator for
ν0=1.5 GHz and Qext of order 105 the label is ”C15Q5”. The register mark
chips have the marking of their parent chip (explained in the CPW section)
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Figure 32: Microstrip silicon chip designs for ν0=6 GHz. Left: Impedance
transformer for Z0

L=10 kΩ. Right: Half-wavelength resonator for Qext of order
103.

Chip Label ν0 [GHz] Gap size [µm] Cκ [fF] Qext

M6Q2 6 100 32.7 200
M6Q3 6 400 10.1 2168
M6Q4 6 600 5.4 7581
M6Q5 6 800 4.7 10137
M2Q2 2 50 43.3 1062
M2Q3 2 100 32.7 1795
M2Q4 2 300 14.3 9730
M2Q5 2 600 5.4 68226

Table 3: Microstrip half-wavelength resonator designs for the silicon chip optical
mask. Cκ is calculated with Maxwell assuming 200nm of oxidized silicon (SiOx)
in the substrate. Qext is calculated with Eq. (60).

followed underneath by an ”R”.
Note that while the microstrip designs are laid down as a positive layer,

where outlined geometry represents metallization, the coplanar waveguide de-
signs are drawn negatively, where outlined geometry represents metallization to
be removed.

5.1.1 Microstrip Designs

For the microstrip chips, two sets of impedance transformers were designed:
for operation at 2 GHz (Fig. 33) and 6 GHz (Fig. 32). These were chosen to
fit within the operating bands of most of the laboratory equipment for low-
temperature operation, such as amplifiers, circulators and directional couplers.
Half-wavelength resonators are designed for each of these operating frequencies,
with four different coupling capacitances for appropriate variation in the order
of Qext, allowing for measurements from the high-loss, room-temperature range
to the small loss, superconducting regime. Table 3 displays the resonator oper-
ating frequency ν0, approximate order of Q indicated on the chip label, chosen
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Figure 33: Microstrip silicon chip designs for ν0=2 GHz. Left: Impedance
transformer for Z0

L=10 kΩ. Right: Half-wavelength resonator for Qext of order
103.

microstrip resonator gap capacitor sizes, corresponding Cκ, and resulting Qext.
Note that the Cκ calculations performed in Maxwell assume a 200 nm thick layer
of silicon oxide, SiOx, formed by thermal oxidation of the silicon substrate.

The disadvantages of the microstrip transmission line design became imme-
diately evident upon design. To match to the standard microwave frequency
operating impedance 50 Ω the width of the microstrip line is fixed as a function
of the thickness and dielectric constant ǫr of the substrate [2, 4]. The fixed
width of microstrip lines puts an upper limit on their turning radius, preventing
efficient size reduction of on-chip designs. This forces the use of multiple base
chip sizes as well as the use of all the area available, up until the chip edges. A
number of problems now appear: the microstrip lines in these chip designs are
typically separated by at most two multiples of their width, which will likely
lead to interline coupling. They are also exposed to the chip edge, which changes
the effective dielectric constant ǫeff . Also, because of their fixed width, there is
no method to minimize reflections at the transition from sample holder input
lines to chip launcher.

Additionally, fabricating break junctions, nanowires, or other structures nec-
essary for accessing quantum systems is made more difficult by the fact that the
ground plane for the microstrip lines is on the opposite side of the transmission
line itself. Thus a nanowire at the edge of the loaded line of one of the silicon
chip microstrip impedance transformers would have to be connected to ground
either by a ’via’ to the opposite chip side, a difficult prospect for silicon chips, or
by wrapping around the chip edge to the opposite chip side, also an impractical
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Figure 34: The coplanar waveguide (CPW) transmission line. The center con-
ductor width is w = 2a, and g is the gap width.

Figure 35: Two CPW impedance transformers. Left: ν0=6 GHz, Z0
L=10 kΩ.

Right: ν0=1.5 GHz, Z0
L=1 kΩ.

idea for silicon chips. The long length of such a nanowire would also increase
the stray inductance and capacitance of the effective load.

These difficulties make clear that a different transmission line design could
be advantageous. The choice made was the coplanar waveguide, described in
the following section.

5.1.2 Coplanar Waveguide (CPW) Designs

The coplanar waveguide design is show in Fig. 34. Here, the center conductor
of width w = 2a projects fields lines through the gap of width g to the lateral
ground planes. One of the potential issues identified with the CPW design
stems from the lateral ground planes, which when used on a chip with a back
metallization for the ground plane becomes a floating ground. Better grounding
is achieved by attaching vias from the lateral floating grounds to the back ground
plane. Modes in the lateral ground planes may also be excited; these may be
suppressed with a chosen periodicity of via placement.

The impedance match to the standard microwave operating impedance of 50
Ω is achieved in the CPW case by adjusting the ratio of center conductor width
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Figure 36: Two CPW half-wavelength resonators. Left: ν0=6 GHz, Qext of
order 102. Right: ν0=1.5 GHz, Qext of order 103.

Figure 37: The end of the loaded branch of a CPW impedance transformer.
Visible is the 30 µm long end-gap.

to gap width, w/g. Thus unlike the microstrip design, the CPW transmission
line cross sectional size can be arbitrarily tailored for convenience, up to the
resolution of the fabrication system. This allows for a far smaller turning radius
and hence the ability to easily squeeze long lengths of transmission lines onto
smaller chip dimensions. It also allows for the minimization of reflections at
the transition from sample holder input line to chip launcher by allowing the
launcher to begin at the input line width and to subsequently shrink (at constant
impedance) to the on-chip line width. These transitions are visible at the lateral
edges of the chips. For these chips, a center conductor width of w = 10µm was
chosen. Note also that all the CPW designs fit on one base chip size of 2 mm x
7 mm, with ample space to avoid edge proximity and interline coupling.

The CPW chips provide another advantage by their use of lateral ground
planes. The end of the loaded line of the impedance transformer is directly
opposite the ground. Thus attachment of a nanowire or other nanoscale load
with small stray reactances is made potentially simpler as the device has only
to reach across the 30 µm long end-gap to be grounded. The length of the end-
gap is chosen to minimize stray capacitance due to center conductor-ground
coupling at the edge while providing a convenient length for future nanowire
deposition. The condition on minimization is that lend > 2(2g + w) where lend

is the end-gap length [5].
Because of the small chosen center conductor width of 10 µm, it is difficult to

achieve high coupling capacitances Cκ with gap capacitors as in the microstrip
half-wavelength resonator case. To increase the available Cκ and decrease Qext

for higher-loss measurements, finger capacitors are used. Note that the use of
these are possible only because of the dependence of CPW impedance on the
center conductor-to-gap ratio. Figure 38 shows one such finger capacitor. The
fingers increase the exposed conductor area and thus the capacitance of the gap.
They will also modify the effective length of the resonator, since the resonator
end is less well-defined. This extra length, however, is negligible compared to
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Figure 38: A multi-finger capacitor for launcher-resonator coupling in the CPW
half-wavelength resonator.

Chip Label ν0 [GHz] Cκ [fF] Qext

C6Q2 6 79.8 35.5
C6Q3 6 12.7 1362.7
C6Q4 6 4.6 10492.9
C6Q5 6 1.4 117774.0
C15Q2 1.5 178.4 111.9
C15Q3 1.5 43.0 1913.6
C15Q4 1.5 12.7 21791.4
C15Q5 1.5 4.6 167874.0

Table 4: CPW half-wavelength resonator designs for the silicon chip optical
mask. Cκ is calculated with Maxwell assuming 200nm of oxidized silicon (SiOx)
in the substrate. Qext is calculated with Eq. 60.

the entire resonator length and should only result in a small resonance shift.
Table 4 displays the chosen CPW Cκ values and resulting Qext. Note that

the Cκ calculations performed in Maxwell assume a 200 nm thick layer of silicon
oxide, SiOx due to oxidation of the silicon substrate.

Figure 39 shows two registration mark chips. The registration marks are
positioned at the location of the end-gaps. These chips will be used as alignment
marks for a gold-sputtering fabrication process by which the nano-scale wiring
for quantum device connection will be first laid down, and then the impedance
transformer built on top by optical or electron beam lithography.

Figure 39: Two registration mark chips for quantum device fabriaction. Left:
ν0=6 GHz, Z0

L=1 kΩ. Right: ν0=1.5 GHz, Z0
L=1 kΩ.
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6 Conclusions and Future Work

In this project, impedance transformation circuits for high bandwidth measure-
ments of molecules and other quantum electronic systems at high frequencies
have been investigated. Such impedance transformers could enable sensitive and
efficient measurements of quantum electronic devices on nanosecond timescales.

For transformer development and testing, PC Board circuits were examined.
Both discrete and distributed element impedance transformers were measured
at room temperature, and studies of loss mechanisms were performed at low
temperature.

The lumped element PC Board circuits based on surface-mount devices were
shown to exhibit substantial stray loss and reactive components. Reactive com-
ponents such as stray inductance and capacitance shift matched loads and oper-
ating frequencies; stray loss components prevent matching to high loads at high
frequencies with high bandwidth and sensitivity. Distributed element circuits
were shown to be less susceptible to stray reactance, but limited by losses in the
materials. These losses could be reduced by manufacturing distributed element
transformers with superconductors for low temperature operation.

The material losses of the PC Board impedance transformers were investi-
gated at low temperature to explore the limits of distributed element circuit op-
eration. PC Board half-wavelength resonators were built and measured at room
temperature (300 K) and liquid nitrogen temperature (77 K), demonstrating a
decrease in losses of more than a factor of 2. These results indicate that the
use of low temperatures and low-loss materials will enable the construction of
matching circuits for higher loads with better-controlled sensitivity.

Analytical and numerical tools to analyze our experimental results were also
developed. Using these tools we have been able to determine stray reactive and
dissipative components in the matching circuit as well as reactive components
in the load. These tools will be valuable for detailed analysis of measurement
data on quantum electronic circuits to be performed in the future.

To begin fabrication of low loss circuits, an optical mask for lithographic
fabrication of silicon chip impedance transformers was designed. The mask
allows for the parallel fabrication of a large number of silicon chip impedance
transformers for high matched loads. The high dielectric constant of the silicon
(ǫr=11.9) compared to FR4 (ǫr=4.5) allows for device miniaturization, as well
as providing a low-loss microwave substrate with less variation from sample-to-
sample. Both microstrip and coplanar waveguide transmission line designs are
included on the optical mask. Coplanar waveguides offer increased versatility
compared to microstrip due to their modifiable width for a fixed impedance.
Their geometric flexibility and use of lateral ground planes also allow for easier
future integration of quantum electronic devices.

This project has laid the groundwork for the development of fast, high-
frequency impedance transformers for molecular electronics. This will include
studies of low-loss, silicon chip transformer implementations at liquid helium
(4.2 K) and dilution refrigerator (∼ 20 mK) temperatures. Ultra-low loss
impedance transformers will be realized with the use of superconductors, which
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allow for quality factors on the order of 105 by eliminating much of the conduc-
tor losses. Ultra-reduced losses allow for operation at higher frequencies, which
in turn allows for the creation of higher bandwidth, faster impedance transform-
ers. Ultimately, this development will enable fast and sensitive measurements
of molecular electronics and other nanoscale quantum electronic systems.

43



References

[1] G. Cuniberti, G. Fagas, and K. Richter, Introducing molecular electronics,
Springer, 2005.

[2] T. C. Edwards and M. B. Steer, Foundations of interconnect and microstrip

design, Wiley, 2000.

[3] H. Park, A. Lim, J. Park, A. Alivisatos, and P. McEuen, Fabrication of

metallic electrodes with nanometer separation by electromigration, Applied
Physics Letters 75 (1999), no. 2, 301–303.

[4] David M. Pozar, Microwave engineering, Addison-Wesley Publishing Com-
pany, 1990.

[5] Rainee N. Simons, Coplanar waveguide circuits, components, and systems,
Wiley, 2001.

[6] Brian C. Wadell, Transmission line design handbook, Artech House, 1991.

[7] A. Wallraff, Superconducting solid state cavity quantum electrodynamics, un-
published, 2003.

44


